The class of Sturm-Liouville systems is defined. It appears to be a subclass of Riesz-spectral systems, since it is shown that the negative of a Sturm-Liouville operator is a Riesz-spectral operator on L^2(a,b) and the infinitesimal generator of a C_0-semigroup of bounded linear operators.
@article{bwmeta1.element.bwnjournal-article-amcv13i4p481bwm, author = {Delattre, C\'edric and Dochain, Denis and Winkin, Joseph}, title = {Sturm-Liouville systems are Riesz-spectral systems}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {13}, year = {2003}, pages = {481-484}, zbl = {1065.93010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv13i4p481bwm} }
Delattre, Cédric; Dochain, Denis; Winkin, Joseph. Sturm-Liouville systems are Riesz-spectral systems. International Journal of Applied Mathematics and Computer Science, Tome 13 (2003) pp. 481-484. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv13i4p481bwm/
[000] Belinskiy B.P. and Dauer J.P. (1997): On regular Sturm-Liouville problem on a finite interval with the eigenvalue parameter appearing linearly in the boundary conditions, In: Spectral Theory and Computational Methods of Sturm-Liouville Problems (D. Hinton and P.W. Schaefer, Eds.). -New York: Marcel Dekker, pp. 183-196. | Zbl 0879.34035
[001] Birkhoff G. (1962): Ordinary Differential Equations.- Boston: Ginn. | Zbl 0102.29901
[002] Curtain R.F. and Zwart H. (1995): An Introduction to Infinite-Dimensional Linear Systems Theory.- New York: Springer. | Zbl 0839.93001
[003] Kuiper C.R. and Zwart H.J. (1993): Solutions of the ARE in terms of the Hamiltonian for Riesz-spectral systems. - Lect. Not. Contr. Inf. Sci., Vol. 185, pp. 314-325. | Zbl 0793.93066
[004] Laabissi M., Achhab M.E., Winkin J. and Dochain D. (2001): Trajectory analysis of a nonisothermal tubular reactor nonlinearmodels. - Syst. Contr. Lett., Vol. 42, No. 3, pp. 169-184. | Zbl 0985.93030
[005] Naylor A.W. and Sell G.R. (1982): Linear Operator Theory in Engineering and Science.- New York: Springer. | Zbl 0497.47001
[006] Pazy A. (1983): Semigroups of Linear Operators and Applications to Partial Differential Equations. - New York: Springer. | Zbl 0516.47023
[007] Pryce J.D. (1993): Numerical Solutions of Sturm-Liouville Problems.- New York: Oxford University Press. | Zbl 0795.65053
[008] Ray W.H. (1981): Advanced Process Control. -Boston: Butterworths.
[009] Renardy M. and Rogers R.C. (1993): An Introduction to Partial Differential Equations. - New York: Springer. | Zbl 0917.35001
[010] Sagan H. (1961): Boundary and Eigenvalue Problems in Mathematical Physics.- New York: Wiley. | Zbl 0106.37303
[011] Winkin J., Dochain D. and Ligarius Ph. (2000): Dynamical analysis of distributed parameter tubular reactors. - Automatica, Vol. 36, No. 3, pp. 349-361. | Zbl 0979.93077
[012] Young E.C. (1972): Partial Differential Equations: An Introduction.- Boston: Allyn and Bacon. | Zbl 0228.35001
[013] Young R.M. (1980): An Introduction to Nonharmonic Fourier Series.- New York: Academic Press. | Zbl 0493.42001
[014] Zhidkov P.E. (2000): Riesz basis property of the system of eigenfunctions for a non-linear problem of Sturm-Liouville type.- Sbornik Mathematics, Vol. 191, Nos. 3-4, pp. 359-368. | Zbl 0961.34072