Adaptive compensators for perturbed positive real infinite-dimensional systems
Curtain, Ruth ; Demetriou, Michael ; Ito, Kazufumi
International Journal of Applied Mathematics and Computer Science, Tome 13 (2003), p. 441-452 / Harvested from The Polish Digital Mathematics Library

The aim of this investigation is to construct an adaptive observer and an adaptive compensator for a class of infinite-dimensional plants having a known exogenous input and a structured perturbation with an unknown constant parameter, such as the case of static output feedback with an unknown gain. The adaptive observer uses the nominal dynamics of the unperturbed plant and an adaptation law based on the Lyapunov redesign method. We obtain conditions on the system to ensure uniform boundedness of the estimator dynamics and the parameter estimates, and the convergence of the estimator error. For the case of a known periodic exogenous input we design an adaptive compensator which forces the system to converge to a unique periodic solution. We illustrate our approach with a delay example and a diffusion example for which we obtain convincing numerical results.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:207656
@article{bwmeta1.element.bwnjournal-article-amcv13i4p441bwm,
     author = {Curtain, Ruth and Demetriou, Michael and Ito, Kazufumi},
     title = {Adaptive compensators for perturbed positive real infinite-dimensional systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {13},
     year = {2003},
     pages = {441-452},
     zbl = {1051.93051},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv13i4p441bwm}
}
Curtain, Ruth; Demetriou, Michael; Ito, Kazufumi. Adaptive compensators for perturbed positive real infinite-dimensional systems. International Journal of Applied Mathematics and Computer Science, Tome 13 (2003) pp. 441-452. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv13i4p441bwm/

[000] Balakrishnan A.V. (1995): On a generalization of the Kalman-Yakubovic lemma. - Appl. Math. Optim., Vol. 31, No. 2, pp. 177-187. | Zbl 0821.47031

[001] Baumeister J., Scondo W., Demetriou M. and Rosen I. (1997): On-line parameter estimation for infinite dimensional dynamical systems. - SIAM J. Contr. Optim., Vol. 3, No. 2, pp. 678-713. | Zbl 0873.93026

[002] Curtain R.F. (1996a): Corrections to the Kalman-Yakubovich-Popov Lemma for Pritchard-Salamon systems. - Syst. Contr. Lett., Vol. 28, No. 4, pp. 237-238. | Zbl 0883.93032

[003] Curtain R.F. (1996b): The Kalman-Yakubovich-Popov Lemma for Pritchard-Salamon systems. - Syst. Contr. Lett., Vol. 27, No. 1, pp. 67-72. | Zbl 0877.93065

[004] Curtain R.F. (2001): Linear operator inequalities for stable weakly regular linear systems. - Math. Contr.Sign. Syst., Vol. 14, No. 4, pp. 299-337. | Zbl 1114.93029

[005] Curtain R.F., Demetriou M.A. and Ito K. (1997): Adaptive observers for structurally perturbed infinite dimensional systems. - Proc. IEEE Conf. Decision and Control, San Diego, California, pp. 509-514.

[006] Curtain R.F. and Pritchard A.J. (1978): Infinite Dimensional Linear Systems Theory. - Berlin: Springer. | Zbl 0389.93001

[007] Curtain R.F. and Zwart H.J. (1995): An Introduction to Infinite Dimensional Linear Systems Theory. - Berlin: Springer. | Zbl 0839.93001

[008] Demetriou M.A., Curtain R.F. and Ito K. (1998): Adaptive observers for structurally perturbed positive real delay systems. - Proc. 4th Int. Conf. Optimization: Techniques and Applications, Curtin University of Technology, Perth, Australia, pp. 345-351.

[009] Demetriou M.A. and Ito K. (1996): Adaptive observers for a class of infinite dimensional systems. - Proc. 13th World Congress, IFAC, San Francisco, CA, pp. 409-413.

[010] Hansen S. and Weiss G. (1997): New results on the operator Carleson measure criterion. - IMA J. Math. Contr. Inf., Vol. 14, No. 1, pp. 3-32. | Zbl 0874.93031

[011] Infante E. and Walker J. (1977): A Lyapunov functional for scalar differential difference equations. - Proc. Royal Soc. Edinburgh, Vol. 79A, Nos. 3-4, pp. 307-316. | Zbl 0417.34111

[012] Ito K. and Kappel F. (1991): A uniformly differentiable approximation scheme for delay systems using splines. - Appl. Math. Optim., Vol. 23, No. 3, pp. 217-262. | Zbl 0738.65055

[013] Khalil H.K. (1992): Nonlinear Systems. - New York: Macmillan. | Zbl 0969.34001

[014] Narendra K.S. and Annaswamy A.M. (1989): Stable Adaptive Systems. - Englewood Cliffs, NJ: Prentice Hall. | Zbl 0758.93039

[015] Oostveen J.C. and Curtain R.F. (1998): Riccati equations for strongly stabilizable bounded linear systems. - Automatica, Vol. 34, No. 8, pp. 953-967. | Zbl 0979.93092

[016] Pandolfi L. (1997): The Kalman-Yacubovich theorem: An overview and new results for hyperbolic boundary control systems. - Nonlin. Anal. Theory Meth. Applic., Vol. 30, No. 30, pp. 735-745. | Zbl 0896.93026

[017] Pandolfi L. (1998): Dissipativity and Lur'e problem for parabolic boundary control systems. - SIAM J. Contr. Optim., Vol. 36, No. 6, pp. 2061-2081. | Zbl 0913.43001

[018] Pazy A. (1983): Semigroups of Linear Operators and Applications to Partial Differential Equations. - New York: Springer. | Zbl 0516.47023

[019] Prato G.D. and Ichikawa A. (1988): Quadratic control for linear periodic systems. - Appl. Math. Optim., Vol. 18, No. 1, pp. 39-66. | Zbl 0647.93057

[020] Salamon D. (1984): Control and Observation of Neutral Systems.- Research Notes in Mathematics, 91, Boston: Pitman Advanced Publishing Program. | Zbl 0546.93041

[021] Staffans O.J. (1995): Quadratic optimal control of stable abstract linear systems. - Proc. IFIP Conf. Modelling and Optimization of DPS with Applications to Engineering, Warsaw, Poland, pp. 167-174. | Zbl 0878.49023

[022] Staffans O.J. (1997): Quadratic optimal control of stable well-posed linear systems. - Trans. Amer. Math. Soc., Vol. 349, No. 9, pp. 3679-3715. | Zbl 0889.49023

[023] Staffans O.J. (1998): Coprime factorizations and well-posed linear systems. - SIAM J. Contr. Optim., Vol. 36, No. 4, pp. 1268-1292. | Zbl 0919.93040

[024] Staffans O.J. (1999): Quadratic optimal control of well-posed linear systems. - SIAM J. Contr. Optim., Vol. 37, No. 1, pp. 131-164. | Zbl 0955.49018

[025] Titchmarsh E.C. (1962): Introduction to the Theory of Fourier Integrals. - New York: Oxford University Press. | Zbl 0017.40404

[026] Weiss M. (1994): Riccati Equations in Hilbert Spaces: A Popov Function Approach. - Ph.D. Thesis, Rijksuniversiteit Groningen, The Netherlands.

[027] Weiss M. (1997): Riccati equation theory for Pritchard-Salamon systems: a Popov function approach. - IMA J. Math. Contr. Inf., Vol. 14, No. 1, pp. 45-83. | Zbl 0876.93023

[028] Weiss M. and Weiss G. (1997): Optimal control of stable weakly regular linear systems. - Math. Contr. Signals Syst., Vol. 10, No. 4, pp. 287-330. | Zbl 0884.49021