A nonlinear filtering problem with delays in the state and observation equations is considered. The unnormalized conditional probability density of the filtered diffusion process satisfies the so-called Zakai equation and solves the nonlinear filtering problem. We examine the solution of the Zakai equation using an approximation result. Our theoretical deliberations are illustrated by a numerical example.
@article{bwmeta1.element.bwnjournal-article-amcv13i2p151bwm, author = {Twardowska, Krystyna and Marnik, Tomasz and Pas\l awska-Po\l udniak, Monika}, title = {Approximation of the Zakai equation in a nonlinear filtering problem with delay}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {13}, year = {2003}, pages = {151-160}, zbl = {1052.93058}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv13i2p151bwm} }
Twardowska, Krystyna; Marnik, Tomasz; Pasławska-Południak, Monika. Approximation of the Zakai equation in a nonlinear filtering problem with delay. International Journal of Applied Mathematics and Computer Science, Tome 13 (2003) pp. 151-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv13i2p151bwm/
[000] Ahmed N.V. and Radaideh S.M. (1997): A powerful numerical technique solving Zakai equation for nonlinear filtering. - Dynam.Contr., Vol. 7, No. 3, pp. 293-308. | Zbl 0880.93052
[001] Atar R., Viens F. and Zeituni O. (1999): Robustness of Zakai's equationvia Feynman-Kac representation, In: Stochastic Analysis, Control, Optimization and Applications (W.M. McEneaney, G.G. Yin and Q. Zhang, Eds.). - Boston: Birkhauser, pp. 339-352. | Zbl 0920.93038
[002] Benev V.E. (1981): Exact finite-dimensional filters for certain diffusions with nonlinear drift. - Stochastics, Vol. 5, No. 1-2, pp. 65-92.
[003] Bensoussan A., Głowinski R. and Rascanu A. (1990): Approximation of the Zakai equation by the splitting up method. - SIAM J. Contr.Optim., Vol. 28, No. 6, pp. 1420-1431. | Zbl 0726.60040
[004] Brzezniak Z. and Flandoli F. (1995): Almost sure approximation of Wong-Zakai type for stochastic partial differential equations.- Stoch. Proc. Appl., Vol. 55, No. 2, pp. 329-358. | Zbl 0842.60062
[005] Bucy R.S. (1965): Nonlinear filtering theory. - IEEE Trans. Automat. Contr., Vol. 10, No. 2, pp. 198-212.
[006] Chaleyat-Maurel A., Michel D. and Pardoux E. (1990): Un theorème d'unicite pour l'equation de Zakai. -Stoch. Rep., Vol. 29, No. 1, pp. 1-12. | Zbl 0696.60043
[007] Cohen de Lara M. (1998): Reduction of the Zakai equation by invariancegroup techniques. - Stoch. Proc. Appl., Vol. 73, No. 1, pp. 119-130. | Zbl 0933.93071
[008] Crisan D., Gaines J. and Lyons T. (1998): Convergence of a branchingparticle method to the solution of the Zakai equation. - SIAM J. Appl. Math., Vol. 58, No. 5, pp. 1568-1590. | Zbl 0915.93060
[009] Dawidowicz A.L. and Twardowska K. (1995): On the relation between the Stratonovich and Itô integrals with integrands of delayed argument. -Demonstr. Math., Vol. 28, No. 2, pp. 456-478. | Zbl 0838.60046
[010] Elliot R.J. and Gl owinski R. (1989): Approximations to solutions of the Zakai filtering equation. - Stoch. Anal. Appl., Vol. 7, No. 2, pp. 145-168.
[011] Elliot R.J. and Moore J. (1998): Zakai equations for Hilbert space valued processes. - Stoch. Anal. Appl., Vol. 16, No. 4, pp. 597-605. | Zbl 0910.60031
[012] Elsgolc L.E. (1964): Introduction to the Theory of Differential Equations with Delayed Argument. - Moscow: Nauka (in Russian).
[013] Florchinger P. and Le Gland F. (1991): Time-discretization of the Zakai equation for diffusion processes observed in correlated noise. - Stoch. Stoch. Rep., Vol. 35, No. 4, pp. 233-256. | Zbl 0729.60036
[014] Gyongy I. (1989): The stability of stochastic partial differential equations and applications. Theorems on supports, In: Lecture Notes in Mathematics (G. Da Prato and L. Tubaro, Eds.).- Berlin: Springer, Vol. 1390, pp. 99-118. | Zbl 0683.93092
[015] Gyongy I. and Prohle T. (1990): On the approximation of stochastic partial differential equations and Stroock-Varadhan's support theorem. - Comput. Math. Appl., Vol. 19, No. 1, pp. 65-70. | Zbl 0711.60051
[016] Ikeda N. and Watanabe S. (1981): Stochastic Differential Equations and Diffusion Processes. - Amsterdam: North-Holland. | Zbl 0495.60005
[017] Itô K. (1996): Approximation of the Zakai equation for nonlinear filtering theory. - SIAM J. Contr. Optim., Vol. 34, No. 2, pp. 620-634. | Zbl 0847.93061
[018] Itô K. and Nisio M. (1964): On stationary solutions of a stochastic differential equations. - J. Math. Kyoto Univ., Vol. 4, No. 1, pp. 1-75. | Zbl 0131.16402
[019] Itô K. and Rozovskii B. (2000): Approximation of the Kushner equation. - SIAM J. Control Optim., v.38, No.3, pp.893-915. | Zbl 0952.93126
[020] Kallianpur G. (1980): Stochastic Filtering Theory. - Berlin: Springer. | Zbl 0458.60001
[021] Kallianpur G. (1996): Some recent developments in nonlinear filtering theory, In: Itô stochastic calculus and probability theory (N. Ikeda, Ed.). - Tokyo: Springer, pp. 157-170. | Zbl 0880.60042
[022] Kloeden P. and Platen E. (1992): Numerical Solutions of Stochastic Differential Equations. - Berlin: Springer. | Zbl 0925.65261
[023] Kolmanovsky V.B. (1974): On filtration of certain stochastic processes with after effects. - Avtomatika i Telemekhanika, Vol. 1, pp. 42-48.
[024] Kolmanovsky V., Matasov A. and Borne P. (2002): Mean-square filtering problem in hereditary systems with nonzero initial conditions.- IMA J. Math. Contr. Inform., Vol. 19, No. 1-2, pp. 25-48. | Zbl 1020.93022
[025] Kushner H.J. (1967): Nonlinear filtering: The exact dynamical equations satisfied by the conditional models. - IEEE Trans. Automat. Contr., Vol. 12, No. 3, pp. 262-267.
[026] Liptser R.S. and Shiryayev A.N. (1977): Studies of Random Processes Iand II. - Berlin: Springer. | Zbl 0364.60004
[027] Lototsky S., Mikulevičius R. and Rozovskii B. (1997): Nonlinear filtering revisited: A spectral approach. - SIAM J. Contr. Optim., Vol. 35, No. 2, pp. 435-461. | Zbl 0873.60030
[028] Pardoux E. (1975): Equations aux derivees partielles stochastiques non lineaires monotones. Etude de solutions fortes de type Itô. - Ph. D. thesis, Sci. Math., Univ. Paris Sud.
[029] Pardoux E. (1989): Filtrage non lineaire et equations aux derivees partielles stochastiques associetes. - Preprint, Ecole d'Ete de Probabilites de Saint-Fleur, pp. 1-95.
[030] Pardoux E. (1979): Stochastic partial differential equations and filtering of diffusion processes. - Stochastics, Vol. 3, pp. 127-167. | Zbl 0424.60067
[031] Sobczyk K. (1991): Stochastic Differential Equations with Applicationsto Physics and Engineering. - Dordrecht: Kluwer. | Zbl 0762.60050
[032] Twardowska K. (1993): Approximation theorems of Wong-Zakai type for stochastic differential equations in infinite dimensions. -Dissertationes Math., Vol. 325, pp. 1-54. | Zbl 0777.60051
[033] Twardowska K. (1995): An approximation theorem of Wong-Zakaitype for nonlinear stochastic partial differential equations. -Stoch. Anal. Appl., v.13, No.5, pp.601-626. | Zbl 0839.60059
[034] Twardowska K. and Pasławska-Południak M. (2003): Approximation theorems of Wong-Zakai type for stochastic partial differential equations with delay arising in filtering problems. - to appear. | Zbl 1052.93058
[035] Twardowska K. (1991): On the approximation theorem of Wong-Zakai type for the functional stochastic differential equations. -Probab. Math. Statist., Vol. 12, No. 2, pp. 319-334. | Zbl 0774.60056
[036] Wong E. and Zakai M. (1965): On the convergence of ordinary integralsto stochastic integrals. - Ann. Math. Statist., Vol. 36, pp. 1560-1564. | Zbl 0138.11201
[037] Zakai M. (1969): On the optimal filtering of diffusion processes. - Z. Wahrsch. Verw. Geb., Vol. 11, pp. 230-243. | Zbl 0164.19201