We show how to use the extension and torsion functors in order to compute the torsion submodule of a differential module associated with a multidimensional control system. In particular, we show that the concept of the weak primeness of matrices corresponds to the torsion-freeness of a certain module.
@article{bwmeta1.element.bwnjournal-article-amcv13i1p7bwm, author = {Pommaret, Jean-Fran\c cois and Quadrat, Alban}, title = {A functorial approach to the behaviour of multidimensional control systems}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {13}, year = {2003}, pages = {7-13}, zbl = {1040.93510}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv13i1p7bwm} }
Pommaret, Jean-François; Quadrat, Alban. A functorial approach to the behaviour of multidimensional control systems. International Journal of Applied Mathematics and Computer Science, Tome 13 (2003) pp. 7-13. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv13i1p7bwm/
[000] Fornasini E. and Valcher M.E. (1997): nD polynomial matrices with applications to multidimensional signal analysis. - Multidim. Syst. Signal Process., Vol. 8, No. 4, pp. 387-408. | Zbl 0882.93038
[001] Kashiwara M. (1970): Algebraic Study of Systems of Partial Differential Equations. - Memoires de la Societe Mathematiques de France, No. 63 (1995).
[002] Malgrange B. (1966): Ideals of Differential Functions. - Oxford: Oxford University Press. | Zbl 0177.17902
[003] Oberst U. (1990): Multidimensional constant linear systems. - Acta Appl. Math., Vol. 20, pp. 1-175. | Zbl 0715.93014
[004] Pillai H.K. and Shankar S. (1999): A behavioural approach to control of distributed systems. - SIAM J. Contr. Optim., Vol. 37, No. 2, pp. 388-408. | Zbl 0919.93020
[005] Pommaret J.F. (2001): Partial Differential Control Theory. -Dordrecht: Kluwer.
[006] Pommaret J.F. and Quadrat A. (1999a): Localization and parametrization of linear multidimensional control systems. -Syst. Contr. Lett., Vol. 37, pp. 247-260. | Zbl 0948.93016
[007] Pommaret J.F. and Quadrat A. (1999b): Algebraic analysis of linear multidimensional control systems. - IMA J. Contr.Optim., Vol. 16, pp. 275-297. | Zbl 1158.93319
[008] Pommaret J.F. and Quadrat A. (2000): Equivalences of linear control systems. - Proc. Int. Symp. Mathematical Theory of Networks and Systems, MTNS 2000, Perpignan, France, (on CD-ROM). | Zbl 0971.93017
[009] Quadrat A. (1999): Analyse algebrique des systèmes decontrôle lineaires multidimensionnels. - Ph. D. Thesis, Ecole des Ponts et Chaussees, Marne-La-Vallee, France.
[010] Quadrat A. (2003): The fractional representation approach to synthesis problems: An algebraic analysis viewpoint, I. (weakly) doubly coprime factorizations, II. internal stabilization. - SIAM J. Contr. Optim., (to appear). | Zbl 1035.93017
[011] Rotman J.J. (1979). An Introduction to Homological Algebra. - New York: Academic Press. | Zbl 0441.18018
[012] Shankar S. (2001): The lattice structure of behaviours. -SIAM J. Contr. Optim., Vol. 39, No. 6, pp. 1817-1832. | Zbl 0983.93025
[013] Smith M.C. (1989): On stabilization and the existence of coprime factorizations. - IEEE Trans. Automat. Contr., Vol. 34, No. 9, pp. 1005-1007. | Zbl 0693.93057
[014] Willems J.C. (1991): Paradigms and puzzles in the theory of dynamical systems. - IEEE Trans. Automat. Contr., Vol. 36, No. 3, pp. 259-294. | Zbl 0737.93004
[015] Wood J., Rogers E. and Owens D.H. (1998): A formal theory of matrix primeness. - Math. Contr. Signals Syst., Vol. 11, No. 1, pp. 40-78. | Zbl 0898.93008
[016] Wood J. (2000): Modules and behaviours in nD systems theory. - Multidim. Syst. Signal Process., Vol. 11, pp. 11-48. | Zbl 0963.93015