Continuity of solutions of Riccati equations for the discrete-time JLQP
Czornik, Adam ; Świerniak, Andrzej
International Journal of Applied Mathematics and Computer Science, Tome 12 (2002), p. 539-543 / Harvested from The Polish Digital Mathematics Library

The continuity of the solutions of difference and algebraic coupled Riccati equations for the discrete-time Markovian jump linear quadratic control problem as a function of coefficients is verified. The line of reasoning goes through the use of the minimum property formulated analogously to the one for coupled continuous Riccati equations presented by Wonham and a set of comparison theorems.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:207609
@article{bwmeta1.element.bwnjournal-article-amcv12i4p539bwm,
     author = {Czornik, Adam and \'Swierniak, Andrzej},
     title = {Continuity of solutions of Riccati equations for the discrete-time JLQP},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {12},
     year = {2002},
     pages = {539-543},
     zbl = {1030.93058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv12i4p539bwm}
}
Czornik, Adam; Świerniak, Andrzej. Continuity of solutions of Riccati equations for the discrete-time JLQP. International Journal of Applied Mathematics and Computer Science, Tome 12 (2002) pp. 539-543. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv12i4p539bwm/

[000] Abou-Kandil H., Freiling G. and Jank G. (1995): On the solution of discrete-time Markovian jump linear quadratic control problems. - Automatica, Vol. 31, No. 5, pp. 765-768. | Zbl 0822.93074

[001] Bourles H., Jonnic Y. and Mercier O. (1990): ρ-Stability and robustness: Discrete time case. - Int. J. Contr., Vol. 52, No. 2, pp. 1217-1239, . | Zbl 0707.93057

[002] Chen H.F. (1985): Recursive Estimation and Control for Stochastic Systems. - New York: Wiley.

[003] Chizeck H.J., Willsky A.S. and Castanon D. (1986): Discrete-time Markovian linear quadratic optimal control. - Int. J. Contr., Vol. 43, No. 1, pp. 213-231. | Zbl 0591.93067

[004] Chojnowska-Michalik A., Duncan T.E. and Pasik-Duncan B. (1992): Uniform operator continuity of the stationary Riccati equation in Hilbert space. - Appl. Math. Optim., Vol. 25, No. 2, pp. 171-187. | Zbl 0762.93044

[005] Czornik A. (1996): Adaptive control in linear system with quadratic cost functional. - Matematyka Stosowana (Applied Mathematics), Vol. 39, No. 1, pp. 17-39, (in Polish). | Zbl 0871.93030

[006] Czornik A. (2000): Continuity of the solution of the Riccati equations for continuous time JLQP. - IEEE Trans. Automat. Contr., Vol. 45, pp. 934-937. | Zbl 0977.34062

[007] Czornik A. and Sragovich W. (1995): On asymptotic properties of algebraic Riccati equations for continuous time. - Automat. Remote Contr., Vol. 56, No. 8, pp. 1126-1128. | Zbl 0925.34058

[008] Delchamps D.F. (1980): A note on the analityicity of the Riccati metric, In: Lectures in Applied Mathematics (C.I. Byrnes and C.F. Martin, Eds.). - Providence, RI: AMS, pp. 37-41.

[009] Faibusovich L.E. (1986): Algebraic Riccati equation and sympletic algebra. - Int. J. Contr., Vol. 43, No. 3, pp. 781-792. | Zbl 0559.93020

[010] Ji Y. and Chizeck H.J. (1988): Controllability, observability and discrete-time Markovian jump linear quadratic control. - Int. J.Contr., Vol. 48, No. 2, pp. 481-498. | Zbl 0669.93007

[011] Lancaster P. and Rodman L. (1995): Algebraic Riccati Equation. - Oxford: Oxford Univ. Press. | Zbl 0836.15005

[012] Rodman L. (1980): On extremal solution of the algebraic Riccati equation, In: Lectures in Applied Mathematics (C.I. Byrnes and C.F. Martin, Eds.). - Providence, RI: AMS, pp. 311-327.

[013] Wonham W.M. (1971): Random differential equations in control theory, In: Probabilistic Methods in Applied Mathematics (A.T. Bharucha-Reid, Ed.). - New York: Academic Press, Vol. 2. | Zbl 0223.93045