A novel procedure is given here for constructing non-negative functions with zero-valued global minima coinciding with eigenvectors of a general real matrix A. Some of these functions are distinct because all their local minima are also global, offering a new way of determining eigenpairs by local optimization. Apart from describing the framework of the method, the error bounds given separately for the approximation of eigenvectors and eigenvalues provide a deeper insight into the fundamentally different nature of their approximations.
@article{bwmeta1.element.bwnjournal-article-amcv12i4p533bwm, author = {Kocsor, Andr\'as and Dombi, J\'ozsef and B\'alint, Imre}, title = {Inequality-based approximation of matrix eigenvectors}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {12}, year = {2002}, pages = {533-538}, zbl = {1037.93041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv12i4p533bwm} }
Kocsor, András; Dombi, József; Bálint, Imre. Inequality-based approximation of matrix eigenvectors. International Journal of Applied Mathematics and Computer Science, Tome 12 (2002) pp. 533-538. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv12i4p533bwm/
[000] Bazaraa M.S. , Sherali H.D. and Shetty C.M. (1993): Nonlinear Programming Theory and Algorithms. - New York: Wiley. | Zbl 0774.90075
[001] Bellman R. (1970): Introduction to Matrix Analysis (2nd Ed.). - New York: McGraw-Hill. | Zbl 0216.06101
[002] Dragomir S.S. and Arslangic uS.Z. (1991): A refinement of the Cauchy-Buniakowski-Schwarz inequality for real numbers. - Radovi Matematičui (Sarajevo) Vol. 7, No. 2, pp. 299-303. | Zbl 0748.26010
[003] Eichhorn W. (1978): Functional Equations in Economics. -Reading, MA: Addison-Wesley. | Zbl 0397.90002
[004] Golub G.H. and Van Loan C.F. (1996): Matrix Computations (3rd Ed.). - Baltimore: The John Hopkins University Press. | Zbl 0865.65009
[005] Hardy G.H., Littlewood J.E. and Pólya G. (1934): Inequalities. - London: Cambridge University Press.
[006] Kato T. (1966): Perturbation Theory of Linear Operators. - New York: Springer. | Zbl 0148.12601
[007] Mitrinovic D.S., Pečaric and Fink J.E.(1993): Classical and New Inequalities in Analysis. - London: Kluwer. | Zbl 0771.26009
[008] Parlett B. (1980): The Symmetric Eigenvalue Problem. - Englewodd Cliffs: Prentice-Hall. | Zbl 0431.65017
[009] Wilkinson J.H. (1965): The Algebraic Eigenvalue Problem. - Oxford: Oxford University Press. | Zbl 0258.65037