Two observer-based tracking algorithms for a unicycle mobile robot
Jakubiak, Janusz ; Lefeber, Erjen ; Tchoń, Krzysztof ; Nijmeijer, Henk
International Journal of Applied Mathematics and Computer Science, Tome 12 (2002), p. 513-522 / Harvested from The Polish Digital Mathematics Library

A trajectory tracking problem for the three-dimensional kinematic model of a unicycle-type mobile robot is considered. It is assumed that only two of the tracking error coordinates are measurable. By means of cascaded systems theory we develop observers for each of the error coordinates and show the K-exponential convergence of the tracking error in combined closed-loop observer-controller systems. The results are illustrated with computer simulations.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:207606
@article{bwmeta1.element.bwnjournal-article-amcv12i4p513bwm,
     author = {Jakubiak, Janusz and Lefeber, Erjen and Tcho\'n, Krzysztof and Nijmeijer, Henk},
     title = {Two observer-based tracking algorithms for a unicycle mobile robot},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {12},
     year = {2002},
     pages = {513-522},
     zbl = {1034.93043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv12i4p513bwm}
}
Jakubiak, Janusz; Lefeber, Erjen; Tchoń, Krzysztof; Nijmeijer, Henk. Two observer-based tracking algorithms for a unicycle mobile robot. International Journal of Applied Mathematics and Computer Science, Tome 12 (2002) pp. 513-522. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv12i4p513bwm/

[000] Brockett R. (1983): Asymptotic stability and feedback stabilization, In: Differential Geometric Control Theory (Brockett R., Milman R. and Sussman H., Eds.). — Boston: Birkhäuser, pp. 181–191. | Zbl 0528.93051

[001] Canudas de Wit C., Siciliano B. and Bastin G. (Eds.) (1996): Theory of Robot Control. — New York: Springer. | Zbl 0854.70001

[002] Dixon W.E., Dawson D.M., Zhang F. and Zergeroglu E. (1999): Global exponential tracking control of a mobile robot system via a PE condition. — Proc. 38th Conf. Decision and Control, Phoenix, Arizona, pp. 4822–4827.

[003] Fierro R. and Lewis F. (1995): Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics. — Proc. 34th IEEE Conf. Decision and Control, New Orleans, LA, pp. 3805–3810.

[004] Fliess M., Levine J., Martin P. and Rouchon P. (1995): Design of trajectory stabilizing feedback for driftless flat systems. — Proc. 3rd European Control Conf., Rome, Italy, pp. 1882– 1887.

[005] Guillaume D. and Rouchon P. (1998): Observation and control of a simplified car. — Proc. IFAC Workshop Motion Control, Grenoble, France, pp. 63–67.

[006] Ioannou P.A. and Sun J. (1996): Robust Adaptive Control. — Upper Saddle River: Prentice-Hall.

[007] Jiang Z.-P. and Nijmeijer H. (1997): Tracking control of mobile robots: A case study in backstepping. — Automatica, Vol. 33, No. 7, pp. 1393–1399. | Zbl 0882.93057

[008] Jiang Z.-P. and Nijmeijer H. (1999): Observer-controller design for nonholonomic systems, In: New Trends in Nonlinear Observer Design (Nijmeijer H. and Fossen T.I., Eds.). — London: Springer, pp. 207–228. | Zbl 0933.93039

[009] Kanayama Y., Kimura Y., Miyazaki F. and Noguchi T. (1990): A stable tracking control scheme for an autonomous mobile robot. — Proc. IEEE Int. Conf. Robotics and Automation, Cincinnati, Ohio, pp. 384–389.

[010] Khalil H. (1996): Nonlinear Systems, 2nd Ed. — Upper Saddle River, NJ: Prentice Hall.

[011] Kolmanovsky I. and McClamroch N. (1995): Developments in nonholonomic control systems.—IEEE Contr. Syst. Mag., Vol. 16, No. 6, pp. 20–36.

[012] Krstić M., Kanellakopoulos I. and Kokotović P. (1995): Nonlinear and Adaptive Control Design.—New York: Wiley. | Zbl 0763.93043

[013] Lefeber E. (2000): Tracking control of nonlinear mechanical systems. — Ph.D. Thesis, Universiteit Twente, Enschede, the Netherlands.

[014] Lefeber E., Jakubiak J., Tchoń K. and Nijmeijer H. (2001): Observer based kinematic tracking controllers for a unicycletype mobile robot.—Proc. 2001 IEEE Int. Conf. Robotics and Automation, Seoul, Korea, pp. 2084–2089.

[015] Lefeber E., Robertsson A. and Nijmeijer H. (2000): Linear controllers for exponential tracking of systems in chained form. — Int. J. Robust Nonlin. Contr., Vol. 10 No. 4, pp. 243–264. | Zbl 0955.93015

[016] Loría A., Panteley E. and Teel A. (1999): A new notion of persistency-of-excitation for UGAS on NLTV systems: Application to stabilisation of nonholonomic systems. — Proc. 5th European Control Conf., Karlsruhe, Germany, Paper No. 500, (CD-ROM).

[017] Micaelli A. and Samson C. (1993): Trajectory tracking for unicycle-type and two-steering-wheels mobile robots. — Rapport de Recherche 2097, INRIA.

[018] Murray R., Walsh G. and Sastry S. (1992): Stabilization and tracking for nonholonomic control systems using timevarying state feedback. — Proc. IFAC Symp. Nonlinear Control Systems Design, Bordeaux, France, pp. 109–114.

[019] Oelen W. and van Amerongen J. (1994): Robust tracking control of two-degrees-of-freedom mobile robots. — Contr. Eng. Prac., Vol. 2, No.2, pp. 333–340.

[020] Panteley E., Lefeber E., Loría A. and Nijmeijer H. (1998): Exponential tracking control of a mobile car using a cascaded approach.—Proc. IFACWorkshop Motion Control, Grenoble, France, pp. 221–226.

[021] Panteley E. and Loría A. (1998): On global uniform asymptotic stability of nonlinear time-varying systems in cascade. — Syst. Contr. Lett., Vol. 33, No. 2, pp. 131–138. | Zbl 0902.93059

[022] Samson C. and Ait-Abderrahim K. (1991): Feedback control of a nonholonomic wheeled cart in cartesian space. — Proc. 1991 IEEE Conf. Robotics and Automation, Sacramento, pp. 1136–1141.

[023] Sørdalen O. and Egeland O. (1995): Exponential stabilization of nonholonomic chained systems. — IEEE Trans. Automat. Contr., Vol. 40, No. 1, pp. 35–49. | Zbl 0828.93055

[024] Ulyanov V., Watanabe S., Yamafuji K., Ulyanov S., Litvintseva L.V. and Kurawaki I. (1998): Intelligent robust control of a robotic unicycle based on a new physical measure for mechanical controllability. — Adv. Robotics, Vol. 12, No. 4, pp. 455–482.

[025] Walsh G., Tilbury D., Sastry S., Murray R. and Laumond J. (1994): Stabilization of trajectories for systems with nonholonomic constraints. — IEEE Trans. Automat. Contr., Vol. 39, No. 1, pp. 216–222. | Zbl 0825.93677