A boundary-value problem for linear PDAEs
Marszałek, Wiesław ; Trzaska, Zdzisław
International Journal of Applied Mathematics and Computer Science, Tome 12 (2002), p. 487-491 / Harvested from The Polish Digital Mathematics Library

We analyze a boundary-value problem for linear partial differential algebraic equations, or PDAEs, by using the method of the separation of variables. The analysis is based on the Kronecker-Weierstrass form of the matrix pencil[A,-λ_n B]. A new theorem is proved and two illustrative examples are given.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:207604
@article{bwmeta1.element.bwnjournal-article-amcv12i4p487bwm,
     author = {Marsza\l ek, Wies\l aw and Trzaska, Zdzis\l aw},
     title = {A boundary-value problem for linear PDAEs},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {12},
     year = {2002},
     pages = {487-491},
     zbl = {1039.93029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv12i4p487bwm}
}
Marszałek, Wiesław; Trzaska, Zdzisław. A boundary-value problem for linear PDAEs. International Journal of Applied Mathematics and Computer Science, Tome 12 (2002) pp. 487-491. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv12i4p487bwm/

[000] Brenan K.E., Campbell S.L. and Petzold L.R. (1996): Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. - Philadelphia, PA: SIAM. | Zbl 0844.65058

[001] Campbell S.L. (1982): Singular Systems of Differential Equations II. - Marshfield, MA: Pitman. | Zbl 0482.34008

[002] Campbell S.L. and Marszałek W. (1999): Index of infinite dimensional differential algebraic equations. - Math. Comp. Model. Dynam. Syst., Vol. 5, No. 1, pp. 18-42. | Zbl 0922.35040

[003] Campbell S.L. and Marszałek W. (1996): ODEDAE integrators and MOL problems. -Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM), pp. 251-254. | Zbl 0900.65274

[004] Campbell S.L. and Marszałek W. (1998): Mixed symbolic-numerical computations with general DAEs: An applications case study. - Numer. Alg., Vol. 19, No. 1, pp. 85-94. | Zbl 0929.34003

[005] Campbell S.L. and Marszałek W. (1997): DAEs arising from traveling wave solutions of PDEs I. - J. Comp. Appl. Math., Vol. 82, No. 1-2, pp. 41-58. | Zbl 0952.34002

[006] Clark K.D. and Petzold L.R. (1989): Numerical solution of boundary value problem in differential algebraic systems. - SIAM J. Sci. Stat. Comp., Vol. 10, No. 5, pp. 915-936. | Zbl 0677.65089

[007] Griepentrog E. and Marz R. (1986): Differential-Algebraic Equations and Their Numerical Treatment. - Treubner-Texte zur Mathematik, Band 88, Treubner: Leipzig. | Zbl 0629.65080

[008] Haberman R. (1998): Elementary Applied Partial Differential Equations(with Fourier Series and Boundary Value Problems). - Upper Saddle River, NJ: Prentice Hall. | Zbl 0949.35001

[009] Lewis F.L. (1986): A survey of linear singular systems. - Circ.Syst. Signal Process., Vol. 5, No. 1, pp. 3-36. | Zbl 0613.93029

[010] Marszałek W. and Trzaska Z.W. (1995): Analysis of implicit hyperbolic multivariable systems. - Appl. Math. Model., Vol. 19, No. 7, pp. 400-410. | Zbl 0832.65105

[011] Marszałek W. and Campbell S.L. (1999): DAEs arising from traveling wave solutions of PDEs II. - Comp. Math. Appl., Vol. 37, No. 1, pp. 15-34. | Zbl 0952.34003

[012] Pipilis K.G. (1990): Higher Order Moving Finite Element Methods for Systems Described by Partial Differential-Algebraic Equations. - Ph.D. Thesis, Dept. Chem. Eng., Imperial College, London.

[013] Strauss W.A. (1992): Partial Differential Equations: An Introduction. - New York: Wiley. | Zbl 0817.35001

[014] Trzaska Z.W. and Marszałek W. (1993): Singular distributed parameter systems. - IEE Proc., Pt.D. Contr. Th. Appl., Vol. 140, No. 5, pp. 305-308. | Zbl 0786.93054

[015] Watkins D.S. (1991): Fundamentals of Matrix Computations.- New York: Wiley. | Zbl 0746.65022