A context-based approach to linguistic hedges
De Cock, Martine ; Kerre, Etienne
International Journal of Applied Mathematics and Computer Science, Tome 12 (2002), p. 371-382 / Harvested from The Polish Digital Mathematics Library

We present a framework of L-fuzzy modifiers for L being a complete lattice. They are used to model linguistic hedges that act on linguistic terms represented by L-fuzzy sets. In the modelling process the context is taken into account by means of L-fuzzy relations, endowing the L-fuzzy modifiers with a clear inherent semantics. To our knowledge, these L-fuzzy modifiers are the first ones proposed that are suitable to perform this representation task for a lattice L different from the unit interval. In the latter case they undoubtedly outperform the traditional representations, such as powering and shifting hedges, from the semantical point of view.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:207594
@article{bwmeta1.element.bwnjournal-article-amcv12i3p371bwm,
     author = {De Cock, Martine and Kerre, Etienne},
     title = {A context-based approach to linguistic hedges},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {12},
     year = {2002},
     pages = {371-382},
     zbl = {1062.68123},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv12i3p371bwm}
}
De Cock, Martine; Kerre, Etienne. A context-based approach to linguistic hedges. International Journal of Applied Mathematics and Computer Science, Tome 12 (2002) pp. 371-382. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv12i3p371bwm/

[000] Bodenhofer U. (2002): A note on approximate equality versus the Poincaré paradox. - Fuzzy Sets Syst., (to appear).

[001] De Baets B. and Mesiar R. (1999): Triangular norms on product lattices. - Fuzzy Sets Syst., Vol. 104, No. 1, pp. 61-75. | Zbl 0935.03060

[002] De Cock M. and Kerre E. E. (2000): A new class of fuzzy modifiers. - Proc. ISMVL2000 (30th IEEE Int. Symp. Multiple-Valued Logic), Computer Society, Cortland (USA), pp. 121-126.

[003] De Cock M. and Kerre E. E. (2001): Approximate equality is no fuzzy equality. - Proc. EUSFLAT2001 (Int. Conf. European Society for Fuzzy Logic and Technology), Leicester (UK), pp. 369-371.

[004] De Cock M. and Kerre E. E. (2002a): Fuzzy modifiers based on fuzzy relations. -Inf. Sci., (to appear). | Zbl 1076.68083

[005] De Cock M. and Kerre E. E. (2002b): On (un)suitable fuzzy relations to model approximate equality. -Fuzzy Sets Syst., (to appear). | Zbl 1020.03049

[006] De Cock M., Nachtegael M. and Kerre E. E. (2000): Images under Fuzzy relations: A Master-Key to Fuzzy Applications, In: Intelligent Techniques and Soft Computing in Nuclear Science and Engineering (D. Ruan, H. A. Abderrahim, P. D'hondt and E. E. Kerre, Eds.) -Singapore: World Scientific. | Zbl 0991.03049

[007] De Cock M., Žabokrtský Z. and Kerre E. E. (2001): Representing linguistic hedges by L-fuzzy modifiers. -Proc. CIMCA'01 (Int. Conf. Computational Intelligence for Modelling Control and Automation), Las Vegas (USA), pp. 64-72 (CD-ROM).

[008] De Cooman G. and Kerre E. E. (1994): Order norms on bounded partially ordered sets. -J. Fuzzy Math., Vol. 2, No. 2, pp. 281-310. | Zbl 0814.04005

[009] du Bois N., De Cock M., Kerre E. E. and Babuvska R. (2002): A fuzzy set theoretical approach to the automatic generation of absenteeism analyses in natural language. - Proc. IPMU2002 (9th Int. Conf. Information Processing and Management of Uncertainty in Knowledge-Based Systems), Annecy (France), Vol. III, pp. 1961-1968.

[010] Drossos C. and Navara M. (1997): Matrix composition of t-norms, In: Enriched Lattice Structures for Many-Valued and Fuzzy Logics, Proceedings of 18th Linz Seminar on Fuzzy Set Theory (E.P. Klement and S. Gottwald, Eds.). - Luiz, Johannes Kepler Univ., pp. 95-100.

[011] Goguen J. (1967): L-fuzzy sets. - J. Math. Anal. Applic., Vol. 18, No. 1, pp. 145-174. | Zbl 0145.24404

[012] Hellendoorn H. (1990): Reasoning with Fuzzy Logic. -Ph. D. Thesis, T.U. Delft (the Netherlands).

[013] Kerre E. E. (Ed.) (1993): Introduction to the basic principles of fuzzy set theory and some of its applications. - Communication and Cognition, Gent.

[014] Kerre E. E. and De Cock M. (1999): Linguistic modifiers: An overview, In: Fuzzy Logic and Soft Computing (Chen G., Ying M. and Cai K.-Y., Eds.). - Dordrecht: Kluwer Academic Publishers, pp. 69-85.

[015] Klawonn F. (2002): Should fuzzy equality and similarity satisfy transitivity? Comments on the paper by M. De Cock and E. Kerre. -Fuzzy Sets Syst., (to appear). | Zbl 1020.03053

[016] Lakoff G. (1973): Hedges: A study in meaning criteria and the logic of fuzzy concepts. - J. Phil. Logic, Vol. 2, No. 4, pp. 458-508. | Zbl 0272.02047

[017] Novák V. and Perfilieva I. (1999): Evaluating linguistic expressions and functional fuzzy theories in fuzzy logic, In: Computing with Words in Information Intelligent Systems 1: Foundations (Zadeh L. A. and Kacprzyck J., Eds.). - Heidelberg: Springer-Verlag, pp. 383-406. | Zbl 0949.03024

[018] Novák V., Perfilieva I. and Mouckour J. (1999): Mathematical Principles of Fuzzy Logic. -Boston: Kluwer. | Zbl 0940.03028

[019] Orlowska E. and Radzikowska A. (2001): Information relations and operators based on double residuated lattices. - Proc. RELMICS'6 (6-th Int. Workshop Relational Methods in Computer Science), Aisterwijk (the Netherlands), pp. 169-186.

[020] Poincaré H. (1904): La Valeur de la Science. - Paris: Flammarion.

[021] Schweizer B. and Sklar A. (1961): Associative functions and statistical triangle inequalities. - Publ. Math. Debrecen, Vol. 8, pp. 169-186. | Zbl 0107.12203

[022] Wei Q., Chen G. and Wets G. (2000): Modifying fuzzy association rules with linguistic hedges.- 19th Int. Meeting of the North American Fuzzy Information Processing Society, Atlanta (USA), pp. 397-401.

[023] Xu Y., Ruan D. and Liu J. (1999): Uncertainty automated reasoning in intelligent learning of soft knowledge. - Proc. ICST Workshop Information and Communication Technology for Teaching and Training, Gent (Belgium), pp. 29-45.

[024] Xu Y., Ruan D. and Liu J. (2000): Approximate reasoning based on lattice-valued propositional logic L_{vpl}, In: Fuzzy IF-THEN Rules in Computational Intelligence, Theory and Applications (Ruan D. and Kerre E. E., Eds.) - Boston: Kluwer Academic Publishers, pp. 81-105

[025] Zadeh L. A. (1965): Fuzzy sets. - Inf. Contr., Vol. 8, No. 3, pp. 338-353. | Zbl 0139.24606

[026] Zadeh L. A. (1972): A fuzzy-set-theoretic interpretation of linguistic hedges. - J. Cybern., Vol. 2, No. 3, pp. 4-34.

[027] Zadeh L. A. (1975): The concept of a linguistic variable and its application to approximate reasoning I, II, III. - Inf. Sci., Vol. 8, No. 3, pp. 199-249, No. 4, pp. 301-357; Vol. 9, No. 1, pp. 43-80. | Zbl 0397.68071