Notions of externally and internally positive singular discrete-time linear systems are introduced. It is shown that a singular discrete-time linear system is externally positive if and only if its impulse response matrix is non-negative. Sufficient conditions are established under which a single-output singular discrete-time system with matrices in canonical forms is internally positive. It is shown that if a singular system is weakly positive (all matrices E, A, B, C are non-negative), then it is not internally positive.
@article{bwmeta1.element.bwnjournal-article-amcv12i2p197bwm, author = {Kaczorek, Tadeusz}, title = {Externally and internally positive singular discrete-time linear systems}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {12}, year = {2002}, pages = {197-202}, zbl = {1140.93420}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv12i2p197bwm} }
Kaczorek, Tadeusz. Externally and internally positive singular discrete-time linear systems. International Journal of Applied Mathematics and Computer Science, Tome 12 (2002) pp. 197-202. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv12i2p197bwm/
[000] Cobb D. (1984): Controllability, observability and duality in singular systems. - IEEE Trans. Automat. Contr., Vol. AC-29, No. 12, pp. 1076-1082.
[001] Dai L. (1989): Singular Control Systems. - Berlin: Springer. | Zbl 0669.93034
[002] Fanti M.P., Maione B. and Turchiano B. (1990): Controllability of multi-input positive discrete-time systems. - Int. J. Contr., Vol. 51, No. 6, pp. 1295-1308. | Zbl 0702.93012
[003] Kaczorek T. (1993): Linear Control Systems, Vol. 2. - New York: Wiley. | Zbl 0784.93003
[004] Kaczorek T. (1997): Positive singular discrete linear systems.-Bull. Pol. Acad. Techn. Sci., Vol. 45, No. 4, pp. 619-631. | Zbl 0931.93033
[005] Kaczorek T. (1998a): Positive descriptor discrete-time linear systems. - Probl. Nonlin. Anal. Eng. Syst., Vol. 7, No. 1, pp. 38-54.
[006] Kaczorek T. (1998b): Weakly positive continuous-time linear systems. - Bull. Pol. Acad. Techn. Sci., Vol. 46, No. 2, pp. 233-245. | Zbl 0917.93048
[007] Klamka J. (1991): Controllability of Dynamical Systems. - Dordecht: Kluwer. | Zbl 0732.93008
[008] Lewis F.L. (1984): Descriptor systems: Decomposition into forward and backward subsystems. - IEEE Trans. Automat. Contr., Vol. AC-29, pp. 167-170. | Zbl 0534.93013
[009] Lewis F.L. (1986): A survey of linear singular systems. - Circuits Syst. Signal Process., Vol. 5, No. 1, pp. 1-36.
[010] Luenberger G. (1977): Dynamic equations in descriptor form. - IEEE Trans. Automat. Contr., Vol. AC-22, No. 3, pp. 312-321. | Zbl 0354.93007
[011] Luenberger D.G. (1978): Time-invariant descriptor systems. - Automatica, Vol. 14, No.2, pp. 473-480. | Zbl 0398.93040
[012] Mertzios B.G. and Lewis F.L. (1989): Fundamental matrix of discrete singular systems.-Circuits Syst. Signal Process., Vol. 8, No. 3, pp. 341-355. | Zbl 0689.93041
[013] Ohta Y., Madea H. and Kodama S. (1984): Reachability, observability and realizability of continuous-time positive systems. - SIAM J. Contr. Optim., Vol. 22, No. 2, pp. 171-180. | Zbl 0539.93005