A general solution to the output-zeroing problem for MIMO LTI systems
Tokarzewski, Jerzy
International Journal of Applied Mathematics and Computer Science, Tome 12 (2002), p. 161-171 / Harvested from The Polish Digital Mathematics Library

The problem of zeroing the output in an arbitrary linear continuous-time system S(A,B,C,D) with a nonvanishing transfer function is discussed and necessary conditions for output-zeroing inputs are formulated. All possible real-valued inputs and real initial conditions which produce the identically zero system response are characterized. Strictly proper and proper systems are discussed separately.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:207576
@article{bwmeta1.element.bwnjournal-article-amcv12i2p161bwm,
     author = {Tokarzewski, Jerzy},
     title = {A general solution to the output-zeroing problem for MIMO LTI systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {12},
     year = {2002},
     pages = {161-171},
     zbl = {1044.93036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv12i2p161bwm}
}
Tokarzewski, Jerzy. A general solution to the output-zeroing problem for MIMO LTI systems. International Journal of Applied Mathematics and Computer Science, Tome 12 (2002) pp. 161-171. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv12i2p161bwm/

[000] Chen C.T. (1984): Linear System Theory and Design. - New York: Holt-Rinehart-Winston.

[001] El-Ghezawi O., Zinober A., Owens D.H. and Billings S.A. (1982): Computation of the zeros and zero directions of linear multivariable systems. - Int. J. Contr., Vol. 36, No. 5, pp. 833-843. | Zbl 0491.93028

[002] Emami-Naeini A. and Van Dooren P. (1982): Computation of zeros of linear multivariable systems. - Automatica, Vol. 18, No. 4, pp. 415-430. | Zbl 0484.93029

[003] Gantmacher F.R. (1988): Theory of Matrices. - Moscow: Nauka (in Russian).

[004] Isidori A. (1995): Nonlinear Control Systems. - London: Springer. | Zbl 0878.93001

[005] Karcanias N. and Kouvaritakis B. (1979): The output-zeroing problem and its relationship to the invariant zero structure. - Int. J. Contr., Vol. 30, No. 3, pp. 395-415. | Zbl 0434.93018

[006] Latawiec K., Banka S. and Tokarzewski J. (2000): Control zeros and nonminimum phase LTI MIMO systems. - Ann. Rev. Contr., Vol. 24, pp. 105-112.

[007] MacFarlane A.G.J. and Karcanias N. (1976): Poles and zeros of linear multivariable systems: A survey of the algebraic, geometric and complex variable theory. - Int. J. Contr., Vol. 24, No. 1, pp. 33-74. | Zbl 0374.93014

[008] Rosenbrock H.H. (1970): State Space and Multivariable Theory. - London: Nelson | Zbl 0246.93010

[009] Sontag E.D. (1990): Mathematical Control Theory. - New York: Springer. | Zbl 0703.93001

[010] Schrader C.B. and Sain M.K. (1989): Research on system zeros: A survey. - Int. J. Contr., Vol. 50, No. 4, pp. 1407-1433. | Zbl 0686.93036

[011] Tokarzewski J. (1998): System zeros analysis via the Moore-Penrose pseudoinverse and SVD of the first nonzero Markov parameter. - IEEE Trans. Automat. Contr., Vol. AC-43, No. 9, pp. 1285-1291. | Zbl 0957.93039

[012] Tokarzewski J. (2000a): A note on a general solution of the output - zeroing problem for MIMO LTI systems. - Proc. 6-th Int. Conf. Methods and Models in Automation and Robotics, MMAR'2000, Międzyzdroje, Poland, Vol. I, pp. 243-248.

[013] Tokarzewski J. (2000b): A note on dynamical interpretation of invariant zeros in MIMO LTI systemsand algebraic criterions of degeneracy. - Proc. Int. Symp. Mathematical Theory of Networks and Systems, MTNS'2000, Perpignan, France, (on CD-ROM).