Analysis of a viscoelastic antiplane contact problem with slip-dependent friction
Hoarau-Mantel, Thierry-Vincent ; Matei, Andaluzia
International Journal of Applied Mathematics and Computer Science, Tome 12 (2002), p. 51-58 / Harvested from The Polish Digital Mathematics Library

We study a mathematical problem modelling the antiplane shear deformation of a viscoelastic body in frictional contact with a rigid foundation. The contact is bilateral and is modelled with a slip-dependent friction law. We present the classical formulation for the antiplane problem and write the corresponding variational formulation. Then we establish the existence of a unique weak solution to the model, by using the Banach fixed-point theorem and classical results for elliptic variational inequalities. Finally, we prove that the solution converges to the solution of the corresponding elastic problem as the viscosity converges to zero.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:207568
@article{bwmeta1.element.bwnjournal-article-amcv12i1p51bwm,
     author = {Hoarau-Mantel, Thierry-Vincent and Matei, Andaluzia},
     title = {Analysis of a viscoelastic antiplane contact problem with slip-dependent friction},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {12},
     year = {2002},
     pages = {51-58},
     zbl = {1038.74032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv12i1p51bwm}
}
Hoarau-Mantel, Thierry-Vincent; Matei, Andaluzia. Analysis of a viscoelastic antiplane contact problem with slip-dependent friction. International Journal of Applied Mathematics and Computer Science, Tome 12 (2002) pp. 51-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv12i1p51bwm/

[000] Andreu F., Mazón J.M. and Sofonea M. (2000): Entropy solutions in the study of antiplane shear deformations for elastic solids. - Math. Models Meth. Appl. Sci. (M^3AS), Vol. 10, No. 1, pp. 96-126. | Zbl 1077.74583

[001] Campillo M. and Ionescu I.R. (1997): Initiation of antiplane shear instability under slip dependent friction. - J.Geophys. Res., Vol. B9, pp. 363-371.

[002] Chau O., Han W. and Sofonea M. (2001): Analysis and approximation of a viscoelastic contact problem with slip dependent friction. - Dyn. Cont. Discr. Impuls.Syst., Vol. 8, No. 1, pp. 153-174. | Zbl 1013.74053

[003] Horgan C.O. (1995): Anti-plane shear deformation in linear and nonlinear solid mechanics. - SIAM Rev., Vol. 37, No. 1, pp. 53-81. | Zbl 0824.73018

[004] Horgan C.O. (1995): Decay estimates for boundary-value problems in linear and nonlinear continuum mechanics, In: Mathematical Problems in Elasticity (R. Russo, Ed.). - Singapore: World Scientific, pp. 47-89. | Zbl 0843.73014

[005] Horgan C.O. and Miller K.L. (1994): Anti-plane shear deformation for homogeneous and inhomogeneous anisotropic linearly elastic solids. - J. Appl. Mech., Vol. 61, No. 1, pp. 23-29. | Zbl 0809.73016

[006] Ionescu I.R. and Paumier J.-C. (1996): On the contact problem with slip displacement dependent friction in elastostatics. - Int. J.Eng. Sci., Vol. 34, No. 4, pp. 471-491. | Zbl 0900.73682

[007] Kuttler K.L. and Shillor M. (1999): Set-valued pseudomonotone maps and degenerate evolution equations. - Comm. Contemp. Math., Vol. 1, No. 1, pp. 87-123. | Zbl 0959.34049

[008] Matei A., Motreanu V.V. and Sofonea M. (2001): A Quasistatic Antiplane Contact Problem With Slip Dependent Friction. - Adv. Nonlin. Variat. Ineq., Vol. 4, No. 2, pp. 1-21. | Zbl 1205.74132

[009] Motreanu D. and Sofonea M. (1999): Evolutionary variational inequalities arising in quasistatic frictional contact problems for elastic materials. - Abstr. Appl. Anal., Vol. 4, No. 3, pp. 255-279. | Zbl 0974.58019

[010] Ohnaka M. (1996): Nonuniformity of the constitutive law parameters for shear rupture and quasistatic nucleation to dynamic rupture: A physical model of earthquake generation model. - Earthquake Prediction: The Scientific Challange, Irvine, CA: Acad. of Sci.

[011] Rabinowicz E. (1965): Friction and Wear of Materials. -New York: Wiley.