We study a mathematical problem modelling the antiplane shear deformation of a viscoelastic body in frictional contact with a rigid foundation. The contact is bilateral and is modelled with a slip-dependent friction law. We present the classical formulation for the antiplane problem and write the corresponding variational formulation. Then we establish the existence of a unique weak solution to the model, by using the Banach fixed-point theorem and classical results for elliptic variational inequalities. Finally, we prove that the solution converges to the solution of the corresponding elastic problem as the viscosity converges to zero.
@article{bwmeta1.element.bwnjournal-article-amcv12i1p51bwm, author = {Hoarau-Mantel, Thierry-Vincent and Matei, Andaluzia}, title = {Analysis of a viscoelastic antiplane contact problem with slip-dependent friction}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {12}, year = {2002}, pages = {51-58}, zbl = {1038.74032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv12i1p51bwm} }
Hoarau-Mantel, Thierry-Vincent; Matei, Andaluzia. Analysis of a viscoelastic antiplane contact problem with slip-dependent friction. International Journal of Applied Mathematics and Computer Science, Tome 12 (2002) pp. 51-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv12i1p51bwm/
[000] Andreu F., Mazón J.M. and Sofonea M. (2000): Entropy solutions in the study of antiplane shear deformations for elastic solids. - Math. Models Meth. Appl. Sci. (M^3AS), Vol. 10, No. 1, pp. 96-126. | Zbl 1077.74583
[001] Campillo M. and Ionescu I.R. (1997): Initiation of antiplane shear instability under slip dependent friction. - J.Geophys. Res., Vol. B9, pp. 363-371.
[002] Chau O., Han W. and Sofonea M. (2001): Analysis and approximation of a viscoelastic contact problem with slip dependent friction. - Dyn. Cont. Discr. Impuls.Syst., Vol. 8, No. 1, pp. 153-174. | Zbl 1013.74053
[003] Horgan C.O. (1995): Anti-plane shear deformation in linear and nonlinear solid mechanics. - SIAM Rev., Vol. 37, No. 1, pp. 53-81. | Zbl 0824.73018
[004] Horgan C.O. (1995): Decay estimates for boundary-value problems in linear and nonlinear continuum mechanics, In: Mathematical Problems in Elasticity (R. Russo, Ed.). - Singapore: World Scientific, pp. 47-89. | Zbl 0843.73014
[005] Horgan C.O. and Miller K.L. (1994): Anti-plane shear deformation for homogeneous and inhomogeneous anisotropic linearly elastic solids. - J. Appl. Mech., Vol. 61, No. 1, pp. 23-29. | Zbl 0809.73016
[006] Ionescu I.R. and Paumier J.-C. (1996): On the contact problem with slip displacement dependent friction in elastostatics. - Int. J.Eng. Sci., Vol. 34, No. 4, pp. 471-491. | Zbl 0900.73682
[007] Kuttler K.L. and Shillor M. (1999): Set-valued pseudomonotone maps and degenerate evolution equations. - Comm. Contemp. Math., Vol. 1, No. 1, pp. 87-123. | Zbl 0959.34049
[008] Matei A., Motreanu V.V. and Sofonea M. (2001): A Quasistatic Antiplane Contact Problem With Slip Dependent Friction. - Adv. Nonlin. Variat. Ineq., Vol. 4, No. 2, pp. 1-21. | Zbl 1205.74132
[009] Motreanu D. and Sofonea M. (1999): Evolutionary variational inequalities arising in quasistatic frictional contact problems for elastic materials. - Abstr. Appl. Anal., Vol. 4, No. 3, pp. 255-279. | Zbl 0974.58019
[010] Ohnaka M. (1996): Nonuniformity of the constitutive law parameters for shear rupture and quasistatic nucleation to dynamic rupture: A physical model of earthquake generation model. - Earthquake Prediction: The Scientific Challange, Irvine, CA: Acad. of Sci.
[011] Rabinowicz E. (1965): Friction and Wear of Materials. -New York: Wiley.