We are interested in the finite element approximation of Coulomb's frictional unilateral contact problem in linear elasticity. Using a mixed finite element method and an appropriate regularization, it becomes possible to prove existence and uniqueness when the friction coefficient is less than Cε^{2}|log(h)|^{-1}, where h and ε denote the discretization and regularization parameters, respectively. This bound converging very slowly towards 0 when h decreases (in comparison with the already known results of the non-regularized case) suggests a minor dependence of the mesh size on the uniqueness conditions, at least for practical engineering computations. Then we study the solutions of a simple finite element example in the non-regularized case. It can be shown that one, multiple or an infinity of solutions may occur and that, for a given loading, the number of solutions may eventually decrease when the friction coefficient increases.
@article{bwmeta1.element.bwnjournal-article-amcv12i1p41bwm, author = {Hild, Patrick}, title = {On finite element uniqueness studies for Coulombs frictional contact model}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {12}, year = {2002}, pages = {41-50}, zbl = {1041.74070}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv12i1p41bwm} }
Hild, Patrick. On finite element uniqueness studies for Coulombs frictional contact model. International Journal of Applied Mathematics and Computer Science, Tome 12 (2002) pp. 41-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv12i1p41bwm/
[000] Adams R.A. (1975): Sobolev Spaces. - New-York: Academic Press. | Zbl 0314.46030
[001] Alart P. (1993): Critères d'injectivite et de surjectivite pourcertaines applications de R^n dans lui même: application à la mecanique du contact. - Math. Model. Numer. Anal., Vol. 27, No. 2, pp. 203-222.
[002] Ben Belgacem F. (2000): Numerical simulation of some variational inequalities arisen fromunilateral contact problems by the finite element method. - SIAM J. Numer. Anal., Vol. 37, No. 4, pp. 1198-1216. | Zbl 0974.74055
[003] Ciarlet P.G. (1991): The finite element method for elliptic problems, In: Handbook of Numerical Analysis, Volume II (P.G. Ciarlet and J.L. Lions, Eds.). - Amsterdam: North Holland, pp.17-352.
[004] Coorevits P., Hild P., Lhalouani K. and Sassi T. (2002): Mixed finite element methods for unilateral problems: convergence analysis and numerical studies. - Internal report of Laboratoire de Mathematiques de l'Universite de Savoie n^o 00-01c, to appear in Mathematics of Computation (published online May 21, 2001). | Zbl 1013.74062
[005] Duvaut G. and Lions J.-L. (1972): Les Inequations en Mecanique et en Physique. - Paris: Dunod. | Zbl 0298.73001
[006] Eck C. and Jarušek J. (1998): Existence results for the static contact problem with Coulomb friction. - Math. Mod. Meth. Appl. Sci., Vol. 8, No. 3, pp. 445-468. | Zbl 0907.73052
[007] Haslinger J. (1983): Approximation of the Signorini problem with friction, obeying the Coulomb law. - Math. Meth. Appl. Sci., Vol. 5, No. 3, pp. 422-437. | Zbl 0525.73130
[008] Haslinger J. (1984): Least square method for solving contact problems with friction obeying Coulomb's law. - Apl. Mat., Vol. 29, No. 3, pp. 212-224. | Zbl 0557.73100
[009] Haslinger J., Hlavaček I. and Nečas J. (1996): Numerical methods for unilateral problems in solid mechanics, In: Handbook of Numerical Analysis, Vol. IV (P.G. Ciarlet and J.L. Lions, Eds.). - Amsterdam: North Holland, pp. 313-485. | Zbl 0873.73079
[010] Hassani R., Hild P. and Ionescu I. (2001): On non-uniqueness of the elastic equilibrium with Coulomb friction: A spectral approach. - Internal report of Laboratoire de Mathematiques de l'Universite de Savoie no. 01-04c. Submitted.
[011] Janovsky V. (1981): Catastrophic features of Coulomb friction model, In: The Mathematics of Finite Elements and Aplications (J.R. Whiteman, Ed.). - London: Academic Press, pp.259-264.
[012] Jarušek J. (1983): Contact problems with bounded friction. Coercive case. - Czechoslovak. Math. J., Vol. 33, No. 2, pp. 237-261. | Zbl 0519.73095
[013] Kato Y. (1987): Signorini's problem with friction in linear elasticity. - Japan J. Appl. Math., Vol. 4, No. 2, pp. 237-268. | Zbl 0627.73098
[014] Klarbring A. (1990): Examples of non-uniqueness and non-existence of solutions to quasistatic contact problems with friction. - Ing. Archiv, Vol. 60, pp. 529-541.
[015] Nečas J., Jarušek J. and Haslinger J. (1980): On the solution of the variational inequality to the Signorini problem with small friction. - Boll. Unione Mat. Ital., Vol. 17-B(5), No. 2, pp. 796-811. | Zbl 0445.49011