On the solution of a finite element approximation of a linear obstacle plate problem
Fernandes, Luis ; Figueiredo, Isabel ; Júdice, Joaquim
International Journal of Applied Mathematics and Computer Science, Tome 12 (2002), p. 27-40 / Harvested from The Polish Digital Mathematics Library

In this paper the solution of a finite element approximation of a linear obstacle plate problem is investigated. A simple version of an interior point method and a block pivoting algorithm have been proposed for the solution of this problem. Special purpose implementations of these procedures are included and have been used in the solution of a set of test problems. The results of these experiences indicate that these procedures are quite efficient to deal with these instances and compare favourably with the path-following PATH and the active-set MINOS codes of the commercial GAMS collection.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:207566
@article{bwmeta1.element.bwnjournal-article-amcv12i1p27bwm,
     author = {Fernandes, Luis and Figueiredo, Isabel and J\'udice, Joaquim},
     title = {On the solution of a finite element approximation of a linear obstacle plate problem},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {12},
     year = {2002},
     pages = {27-40},
     zbl = {1041.74068},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv12i1p27bwm}
}
Fernandes, Luis; Figueiredo, Isabel; Júdice, Joaquim. On the solution of a finite element approximation of a linear obstacle plate problem. International Journal of Applied Mathematics and Computer Science, Tome 12 (2002) pp. 27-40. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv12i1p27bwm/

[000] Bertsekas D. (1995): Nonlinear Programming. - Massachusetts: Athena Scientific.

[001] Brook A., Kendrich D. and Meeraus A. (1992): GAMS, User's Guide, Release 2.25. - Massachusetts: Scientific Press.

[002] Ciarlet P.G. (1991): Basic Error Estimates for Elliptic Problems, In: Handbook of Numerical Analysis, Vol. II (P.G. Ciarlet and J.L. Lions, Eds). - Amsterdam: North-Holland. | Zbl 0875.65086

[003] Dirkse S.P. and Ferris M.C. (1995): The PATH solver: A non-monotone stabilization scheme for mixed complementarity problems. - Optim. Meth. Softw., Vol. 5, No. 2, pp. 123-156.

[004] Duff I., Erisman A. and Reid J. (1986): Direct Methods for Sparse Matrices. - Oxford: Claredon Press. | Zbl 0604.65011

[005] Fernandes L., Júdice J. and Patrício J.(1996): An investigation of interior-point and block pivoting algorithms for large scale symmetric monotone linear complementarity problems. -Comp. Optim. Applics., Vol. 5, No. 1, pp. 49-77. | Zbl 0844.90096

[006] George J.A. and Liu J.W. (1981): Computer Solution of Large Sparse Positive Definite Systems. - Englewood Cliffs, NJ.: Prentice-Hall.

[007] Haslinger J., Hlavaček I. and Nečas J.(1996): Numerical Methods for Unilateral Problems in Solid Mechanics, In: Handbook of Numerical Analysis, Vol. IV (P.G.Ciarlet and J.L. Lions, Eds). - Amsterdam: North-Holland. | Zbl 0873.73079

[008] Júdice J. and Pires F.M. (1994): A block principal pivoting algorithm for large-scale strictly monotone linear complementarity problems. -Comp. Oper. Res., Vol. 21, No. 5, pp. 587-596. | Zbl 0802.90106

[009] Kikuchi N. and Oden J.T. (1988): Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Elements. - Philadelphia: SIAM. | Zbl 0685.73002

[010] Nocedal J. and Wright S. (1999): Numerical Optimization. - New York: Springer-Verlag. | Zbl 0930.65067

[011] Ohtake K., Oden J.T. and Kikuchi N. (1980): Analysis of certain unilateral problems in von Karman platetheory by a penalty method, Part 2. - Comp. Meth. Appl. Mech. Eng., Vol. 24, No. 3, pp. 317-337. | Zbl 0457.73096

[012] Ortega J. (1988): Introduction to Parallel and Vector Solution of Linear Systems. - New York: Plenum Press. | Zbl 0669.65017

[013] Portugal L., Resende M., Veiga G. and Júdice J.(2000): A truncated primal-infeasible dual-feasible interior-point network flow method. - Networks, Vol. 35, No. 2, pp. 91-108. | Zbl 0957.90022

[014] Simantiraki E. and Shanno D. (1995): An infeasible interior-point method for linear complementarity problems. - Tech. Rep. RR7-95, New Jersey. | Zbl 0913.65056

[015] Wright S.J. (1997): Primal-Dual Interior-Point Methods. - Philadelphia SIAM.