Dynamic contact problems with velocity conditions
Chau, Oanh ; Motreanu, Viorica
International Journal of Applied Mathematics and Computer Science, Tome 12 (2002), p. 17-26 / Harvested from The Polish Digital Mathematics Library

We consider dynamic problems which describe frictional contact between a body and a foundation. The constitutive law is viscoelastic or elastic and the frictional contact is modelled by a general subdifferential condition on the velocity, including the normal damped responses. We derive weak formulations for the models and prove existence and uniqueness results. The proofs are based on the theory of second-order evolution variational inequalities. We show that the solutions of the viscoelastic problems converge to the solution of the corresponding elastic problem as the viscosity tensor tends to zero and when the frictional potential function converges to the corresponding function in the elastic problem.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:207565
@article{bwmeta1.element.bwnjournal-article-amcv12i1p17bwm,
     author = {Chau, Oanh and Motreanu, Viorica},
     title = {Dynamic contact problems with velocity conditions},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {12},
     year = {2002},
     pages = {17-26},
     zbl = {1205.74134},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv12i1p17bwm}
}
Chau, Oanh; Motreanu, Viorica. Dynamic contact problems with velocity conditions. International Journal of Applied Mathematics and Computer Science, Tome 12 (2002) pp. 17-26. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv12i1p17bwm/

[000] Amassad A., Shillor M. and Sofonea M. (1999): Aquasistatic contact problem for an elastic perfectly plastic body with Tresca's friction. - Nonlin. Anal., Vol. 35, No. 1, pp. 95-109. | Zbl 0923.73054

[001] Andrews K.T., Shillor M. and Kuttler K.L. (1997a): On the dynamic behaviorof a thermoviscoelastic body in frictional contact. -Europ. J. Appl. Math., Vol. 8, No. 4, pp. 417-436. | Zbl 0894.73135

[002] Andrews K.T., Klarbring A., Shillor M. and Wright S. (1997b): A dynamic contact problem with friction and wear. -Int. J. Eng. Sci., Vol. 35, No. 14, pp. 1291-1309. | Zbl 0903.73065

[003] Awbi B., Essoufi El.H. and Sofonea M. (2000): A viscoelastic contact problem with normal damped response and friction. - Annales Polonici Mathematici, Vol. 75, No. 3, pp. 233-246. | Zbl 0994.74051

[004] Barbu V. (1976): Nonlinear Semigroups and Differential Equations in Banach Spaces. - Leyden: Editura Academiei, Bucharest-Noordhoff. | Zbl 0328.47035

[005] Chau O., Han W. and Sofonea M. (2001a): Analysis and approximation of a viscoelastic contact problem with slip dependent friction. - Dynam. Cont. Discr. Impuls. Syst., Series B: Vol. 8, No. 2, pp. 153-174. | Zbl 1013.74053

[006] Chau O., Motreanu D. and Sofonea M. (2001b): Quasistatic Frictional Problems for Elastic and Viscoelastic Materials. -Applications of Mathematics, (to appear). | Zbl 1090.74041

[007] Duvaut G. and Lions J. L. (1976): Inequalities in Mechanics and Physics - Berlin: Springer-Verlag. | Zbl 0331.35002

[008] Han W. and Sofonea M. (2000): Evolutionary variational inequalities arising in viscoelastic contact problems. - SIAMJ. Num. Anal., Vol. 38, No. 2, pp. 556-579. | Zbl 0988.74048

[009] Han W. and Sofonea M. (2001): Time-dependent variational inequalities for viscoelastic contact problems. - J. Comput. Appl. Math. (to appear). | Zbl 1001.74087

[010] Jaruv sek J. and Eck C. (1999): Dynamic contact problems with small Coulomb friction for viscoelastic bodies. Existence of solutions. -Math. Models Meth. Appl. Sci., Vol. 9, No. 1, pp. 11-34. | Zbl 0938.74048

[011] Kavian O. (1993): Introduction à la theorie des points critique set applications aux equations elliptiques. - Berlin: Springer. | Zbl 0797.58005

[012] Kuttler K. L. and Shillor M. (1999): Set-valued pseudomonotone maps and degenerate evolution inclusions -Comm. Contemp. Math., Vol. 1, No. 1, pp. 87-123. | Zbl 0959.34049

[013] Martins J.A.C. and Oden T.J. (1987), Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. - Nonlin. Anal., Vol. 11, No. 3, pp. 407-428. | Zbl 0672.73079

[014] Nečas J. and Hlavaček I. (1981): Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction. - Amsterdam: Elsevier. | Zbl 0448.73009

[015] Panagiotopoulos P.D. (1985), Inequality Problems in Mechanical and Applications. - Basel: Birkhauser. | Zbl 0579.73014

[016] Rochdi M. and Shillor M. (2001c), A dynamic thermoviscoelastic frictional contact problem with damped response (submitted).