In this paper we obtain a limit model for a turbine blade fixed to a 3D solid. This model is a three-dimensional linear elasticity problem in the 3D part of the piece (the rotor) and a two-dimensional problem (the nonlinear shallow shell equations) in the 2D part (the turbine blade), with junction conditions in the part of the turbine blade fixed to the rotor. To obtain this model, we perform an asymptotic analysis, starting with the nonlinear three-dimensional elasticity equations on all the pieces and taking as a small parameter the thickness of the blade.
@article{bwmeta1.element.bwnjournal-article-amcv12i1p101bwm, author = {Rodr\'\i guez, Jos\'e}, title = {A nonlinear model of a turbine blade by asymptotic analysis}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {12}, year = {2002}, pages = {101-113}, zbl = {1041.74047}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv12i1p101bwm} }
Rodríguez, José. A nonlinear model of a turbine blade by asymptotic analysis. International Journal of Applied Mathematics and Computer Science, Tome 12 (2002) pp. 101-113. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv12i1p101bwm/
[000] Bernadou M., Fayolle S. and Lene F. (1989): Numerical analysis of junctions between plates. - Comp. Meth. Appl. Mech. Eng., Vol. 74, No. 3, pp. 307-326. | Zbl 0687.73068
[001] Bernadou M. and Lalanne B. (1987): Calcul de deplacements, contraintes, modes propes de pales tournantes. - Rapport final de l'operation n^0 83322. Contrat DRETINRIA 1584.01.1103.1.
[002] Bernadou M. and Oden T. (1981): An existence theorem for a class of non linear shallow shells problems. - J. Math. Pures Appl., Vol. 60, No. 3, pp. 285-308. | Zbl 0424.35040
[003] Ciarlet P.G. (1988): Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity. - Amsterdam: North-Holland. | Zbl 0648.73014
[004] Ciarlet P.G. (1990): Plates and Junctions in Elastic Multistructures. - Paris: Masson. | Zbl 0706.73046
[005] Ciarlet P.G. (1997): Mathematical Elasticity, Vol. II: Theory of Plates. - Amsterdam: North-Holland. | Zbl 0888.73001
[006] Ciarlet P.G. (2000): Mathematical Elasticity, Vol. III: Theory of Shells. - Amsterdam: North-Holland.
[007] Ciarlet P.G. and Le Dret H. (1989): Justification of the boundary conditions of a clamped plate by an asymptotic analysis. - Asympt. Anal., Vol. 2, No. 4, pp. 257-277. | Zbl 0699.73011
[008] Ciarlet P.G., Le Dret H. and Nzengwa R. (1989): Junctions between three-dimensional and two-dimensional linearly elastic structures. - J. Math. Pures Appl., Vol. 68, No. 3, pp. 261-295. | Zbl 0661.73013
[009] Ciarlet P.G. and Miara B. (1992): Justification of the Two-Dimensional Equations of a Linearly Elastic Shallow Shell. - Comm. Pure Appl. Math., Vol. 45, No. 3, pp. 327-360. | Zbl 0769.73050
[010] Ciarlet P.G. and Paumier J.C. (1986): A justification of the Marguerre-von Karman equations. - Comp. Mech., Vol. 1, pp. 177-202. | Zbl 0633.73069
[011] Destuynder P. (1986): Une Theorie Asymptotique des Plaques Minces en Elasticite Lineaire. - Paris: Masson. | Zbl 0627.73064
[012] El Chazly N.M. (1993): Static and dynamic analysis of wind turbine blades using the finite element method. - Int. J. Num. Meth. Eng., Vol. 36, No. 16, pp. 2791-2804. | Zbl 0800.73464
[013] Le Dret H. (1989): Folded plates revisited. - Comp. Mech., Vol. 5, No. 5, pp. 345-365. | Zbl 0741.73025
[014] Le Dret H. (1990): Modeling of a folded plate. - Comp. Mech., Vol. 5, No. 6, pp. 401-416. | Zbl 0741.73026
[015] Le Dret H. (1991): Problèmes Variationnels dans les Multi-Domaines: Modelisation des Jonctions et Applications. - Paris: Masson.
[016] Rodriguez J.M. (1997): Analyse asymptotique des pales de turbines et des poutres à profil mince. - Ph.D. Thesis, Universite Paris 6, Paris.
[017] Rodriguez J.M. (1999): Asymptotic analysis of a turbine blade. - Asympt. Anal., Vol. 21, No. 3-4, pp. 239-273. | Zbl 0969.74021
[018] Trabucho L. and Via no J.M. (1996): Mathematical modelling of rods, In: Handbook of Numerical Analysis, Vol. IV (P.G. Ciarlet and J.L. Lions, Eds.). - Amsterdam: North-Holland, pp. 487-974.