The following is a short survey of the notion of a well-posed linear system. We start by describing the most basic concepts, proceed to discuss dissipative and conservative systems, and finally introduce J-energy-preserving systems, i.e., systems that preserve energy with respect to some generalized inner products (possibly semi-definite or indefinite) in the input, state and output spaces. The class of well-posed linear systems contains most linear time-independent distributed parameter systems: internal or boundary control of PDE’s, integral equations, delay equations, etc. These systems have existed in an implicit form in the mathematics literature for a long time, and they are closely connected to the scattering theory by Lax and Phillips and to the model theory by Sz.-Nagy and Foiaş. The theory has been developed independently by many different schools, and it is only recently that these different approaches have begun to converge. One of the most interesting objects of the present study is the Riccati equation theory for this class of infinite-dimensional systems (H^2 - and H^∞ -theories).
@article{bwmeta1.element.bwnjournal-article-amcv11i6p1361bwm, author = {Staffans, Olof}, title = {J-energy preserving well-posed linear systems}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {11}, year = {2001}, pages = {1361-1378}, zbl = {1008.93024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv11i6p1361bwm} }
Staffans, Olof. J-energy preserving well-posed linear systems. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) pp. 1361-1378. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv11i6p1361bwm/
[000] Adamajan A. and Arov D.Z. (1970): On unitary couplings of semiunitary operators, In: Eleven Papers in Analysis. — Providence, R.I.: AMS, pp.75–129.
[001] Arov D.Z. (1979): Passive linear stationary dynamic systems. — Siberian Math. J., Vol.20, pp.149–162. | Zbl 0437.93019
[002] Arov D.Z. (1999): Passive linear systems and scattering theory, In: Dynamical Systems, Control Coding, Computer Vision (G. Picci and D.S. Gilliam, Eds.). — Basel: Birkhäuser, pp.27–44. | Zbl 0921.93005
[003] Arov D.Z. and Nudelman M.A. (1996): Passive linear stationary dynamical scattering systems with continuous time. — Int. Eqns. Oper. Theory, Vol.24, pp.1–45. | Zbl 0838.47004
[004] Callier F.M. and Winkin J. (1990): Spectral factorization and LQ-optimal regulation for multivariable distributed systems. — Int. J. Contr., Vol.52, pp.55–75. | Zbl 0713.93024
[005] Callier F.M. and Winkin J. (1992): LQ-optimal control of infinite-dimensional systems by spectral factorization. — Automatica, Vol.28, pp.757–770. | Zbl 0776.49023
[006] Callier F.M. and Winkin J. (1999): The spectral factorization problem for multivariable distributed parameter systems. — Int. Eqns. Oper. Theory, Vol.34, pp.270–292. | Zbl 0933.93042
[007] Curtain R.F. and Ichikawa A. (1996): The Nehari problem for infinite-dimensional linear systems of parabolic type. — Int. Eqns. Oper. Theory, Vol.26, pp.29–45. | Zbl 0858.47017
[008] Curtain R.F. and Oostveen J.C. (1998): The Nehari problem for nonexponentially stable systems. — Int. Eqns. Oper. Theory, Vol.31, pp.307–320. | Zbl 0910.93024
[009] Curtain R.F. and Weiss G. (1989): Well posedness of triples of operators (in the sense of linear systems theory), In: Control and Optimization of Distributed Parameter Systems (F. Kappel, K. Kunisk and W. Schappacher, Eds.). — Basel: Birkhäuser, pp.41–59.
[010] Curtain R.F., Weiss G. and Weiss M. (1997): Stabilization of irrational transfer functions by controllers with internal loop, In: Systems, Approximation, Singular Integral Operators and Related Topics (A.A. Borichev and N.K. Nikolski, Eds.). — Birkhäuser, pp.179–208. | Zbl 1175.93186
[011] Engel K.-J. (1998): On the characterization of admissible control- and observation operators. — Syst. Contr. Lett., Vol.34, pp.225–227. | Zbl 0909.93034
[012] Flandoli F., Lasiecka I. and Triggiani R. (1988): Algebraic Riccati equations with nonsmoothing observation arising in hyperbolic and Euler–Bernoulli boundary control problems. — Ann. Mat. Pura Appl., Vol.4, No.153, pp.307–382. | Zbl 0674.49004
[013] Grabowski P. (1991): On the spectral-Lyapunov approach to parametric optimization of distributed-parameter systems. — IMA J. Math. Contr. Inf., Vol.7, pp.317–338. | Zbl 0721.49006
[014] Grabowski P. (1993): The LQ controller synthesis problem. — IMA J. Math. Contr. Inf., Vol.10, pp.131–148. | Zbl 0825.93200
[015] Grabowski P. (1994): The LQ controller problem: An example. — IMA J. Math. Contr. Inf., Vol.11, pp.355–368. | Zbl 0825.93201
[016] Grabowski P. and Callier F.M. (1996): Admissible observation operators. Semigroup criteria of admissibility. — Int. Eqns. Oper. Theory, Vol.25, pp.182–198. | Zbl 0856.93021
[017] Grabowski P. and Callier F.M. (2001): Boundary control systems in factor form: Transfer functions and input-output maps. — Int. Eqns. Oper. Theory, Vol.41, pp.1–37. | Zbl 1009.93041
[018] van Keulen B. (1993): H∞ -Control for Distributed Parameter Systems: A State Space Approach. — Basel: Birkhäuser. | Zbl 0788.93018
[019] Lasiecka I. and Triggiani R. (2000): Control Theory for Partial Differential Equations: Continuous and Approximation Theorems. I: Abstract Parabolic Systems. — Cambridge: Cambridge University Press. | Zbl 0942.93001
[020] Lasiecka I. and Triggiani R. (2000): Control Theory for Partial Differential Equations: Continuous and Approximation Theorems. II: Abstract Hyperbolic-Like Systems over a Finite Horizon. — Cambridge: Cambridge University Press. | Zbl 0961.93003
[021] Lax P.D. and Phillips R.S. (1967): Scattering Theory. — New York: Academic Press. | Zbl 0214.12002
[022] Lax P.D. and Phillips R.S. (1973): Scattering theory for dissipative hyperbolic systems. — J. Funct. Anal., Vol.14, pp.172–235. | Zbl 0295.35069
[023] Malinen J. (2000): Discrete time H ∞ algebraic Riccati equations. — Ph.D. Thesis, Helsinki University of Technology. | Zbl 0965.93006
[024] Malinen J., Staffans O.J. and Weiss G. (2002): When is a linear system conservative? — in preparation. | Zbl 1125.47007
[025] Mikkola K. (2002): Infinite-dimensional H ∞ and H 2 regulator problems and their algebraic Riccati equations with applications to the Wiener class. — Ph.D. Thesis, Helsinki University of Technology.
[026] Oostveen J. (2000): Strongly stabilizable distributed parameter systems. — Philadelphia, PA: SIAM. | Zbl 0964.93004
[027] Salamon D. (1987): Infinite dimensional linear systems with unbounded control and observation: A functional analytic approach. — Trans. Amer. Math. Soc., Vol.300, pp.383–431. | Zbl 0623.93040
[028] Salamon D. (1989): Realization theory in Hilbert space. — Math. Syst. Theory, Vol.21, pp.147–164. | Zbl 0668.93018
[029] Sasane A.J. and Curtain R.F. (2001): Inertia theorems for operator Lyapunov inequalities. — Syst. Contr. Lett., Vol.43, pp.127–132. | Zbl 0974.93026
[030] Sasane A.J. and Curtain R.F. (2001): Optimal Hankel norm approximation for the Pritchard- Salamon class of infinite-dimensional systems. — Int. Eqns. Oper. Theory, Vol.39, pp.98–126. | Zbl 0990.93021
[031] Staffans O.J. (1995): Quadratic optimal control of stable systems through spectral factorization. — Math. Contr. Sign. Syst., Vol.8, pp.167–197. | Zbl 0843.93019
[032] Staffans O.J. (1996): On the discrete and continuous time infinite-dimensional algebraic Riccati equations. — Syst. Contr. Lett., Vol.29, pp.131–138. | Zbl 0875.93199
[033] Staffans O.J. (1997): Quadratic optimal control of stable well-posed linear systems. — Trans. Amer. Math. Soc., Vol.349, pp.3679–3715. | Zbl 0889.49023
[034] Staffans O.J. (1998a): Coprime factorizations and well-posed linear systems. — SIAM J. Contr. Optim., Vol.36, pp.1268–1292. | Zbl 0919.93040
[035] Staffans O.J. (1998b): Quadratic optimal control of well-posed linear systems. — SIAM J. Contr. Optim., Vol.37, pp.131–164. | Zbl 0955.49018
[036] Staffans O.J. (1998c): Feedback representations of critical controls for well-posed linear systems. — Int. J. Robust Nonlin. Contr., Vol.8, pp.1189–1217. | Zbl 0951.93038
[037] Staffans O.J. (1998d): On the distributed stable full information H ∞ minimax problem. — Int. J. Robust Nonlin. Contr., Vol.8, pp.1255–1305. | Zbl 0951.93029
[038] Staffans O.J. (1999a): Admissible factorizations of Hankel operators induce well-posed linear systems. — Syst. Contr. Lett., Vol.37, pp.301–307. | Zbl 0948.93014
[039] Staffans O.J. (1999b): Quadratic optimal control through coprime and spectral factorisation. — Europ. J. Contr., Vol.5, pp.167–179. | Zbl 0979.93544
[040] Staffans O.J. (2002): Well-Posed Linear Systems: Part I. Book manuscript, available at http://www.abo.fi/~staffans/.
[041] Staffans O.J. and Mikkola K.M. (1998): A minimax formulation of the infinite-dimensional Nehari problem. — Proc. Symp. Mathematical Theory of Networks and Systems, MTNS’98, Padova, Italy, pp.539–542.
[042] Staffans O.J. and Weiss G. (2002a): Transfer functions of regular linear systems. Part II: The system operator and the Lax-Phillips semigroup. — to appear in Trans. Amer. Math. Soc. | Zbl 0996.93012
[043] Staffans O.J. and Weiss G. (2002b): Transfer functions of regular linear systems. Part III: Inversions and duality. — manuscript. | Zbl 0996.93012
[044] Sz.-Nagy B. and Foiaş C. (1970): Harmonic Analysis of Operators on Hilbert Space. — Amsterdam: North-Holland. | Zbl 0201.45003
[045] Weiss G. (1989a): Admissibility of unbounded control operators. — SIAM J. Contr. Optim., Vol.27, pp.527–545. | Zbl 0685.93043
[046] Weiss G. (1989b): Admissible observation operators for linear semigroups. — Israel J. Math., Vol.65, pp.17–43. | Zbl 0696.47040
[047] Weiss G. (1989c): The representation of regular linear systems on Hilbert spaces, In: Control and Optimization of Distributed Parameter Systems (F. Kappel, K. Kunisk and W. Schappacher, Eds.). — Basel: Birkhäuser, pp.401–416.
[048] Weiss G. (1991): Representations of shift-invariant operators on L 2 by H ∞ transfer functions: An elementary proof, a generalization to Lp , and a counterexample for L∞ . — Math. Contr. Sign. Syst., Vol.4, pp.193–203. | Zbl 0724.93021
[049] Weiss G. (1994a): Transfer functions of regular linear systems. Part I: Characterizations of regularity. — Trans. Amer. Math. Soc., Vol.342, pp.827–854. | Zbl 0798.93036
[050] Weiss G. (1994b): Regular linear systems with feedback. — Math. Contr. Sign. Syst., Vol.7, pp.23–57. | Zbl 0819.93034
[051] Weiss G. and Tucsnak M. (2001): How to get a conservative well-posed linear system out of thin air. Part I: Well-posedness and energy balance. — submitted.
[052] Weiss G., Staffans O.J. and Tucsnak M. (2001): Well-posed linear systems–A survey with emphasis on conservative systems. — Int. J. Appl. Math. Comp. Sci., Vol.11, No.1, pp.7–34. | Zbl 0990.93046
[053] Weiss M. (1997): Riccati equation theory for Pritchard-Salamon systems: A Popov function approach. — IMA J. Math. Contr. Inf., Vol.14, pp.1–37. | Zbl 0876.93023
[054] Weiss M. and Weiss G. (1997): Optimal control of stable weakly regular linear systems. — Math. Contr. Sign. Syst., Vol.10, pp.287–330. | Zbl 0884.49021
[055] Willems J.C. (1972): Dissipative dynamical systems Part I: General theory. — Arch. Rat. Mech. Anal., Vol.45, pp.321–351. | Zbl 0252.93002
[056] Willems J.C. (1972b): Dissipative dynamical systems Part II: Linear systems with quadratic supply rates. — Arch. Rat. Mech. Anal., Vol.45, pp.352–393. | Zbl 0252.93003