Szegő's first limit theorem in terms of a realization of a continuous-time time-varying systems
Iglesias, Pablo ; Zang, Guoqiang
International Journal of Applied Mathematics and Computer Science, Tome 11 (2001), p. 1261-1276 / Harvested from The Polish Digital Mathematics Library

It is shown that the limit in an abstract version of Szegő's limit theorem can be expressed in terms of the antistable dynamics of the system. When the system dynamics are regular, it is shown that the limit equals the difference between the antistable Lyapunov exponents of the system and those of its inverse. In the general case, the elements of the dichotomy spectrum give lower and upper bounds.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:207554
@article{bwmeta1.element.bwnjournal-article-amcv11i6p1261bwm,
     author = {Iglesias, Pablo and Zang, Guoqiang},
     title = {Szeg\H o's first limit theorem in terms of a realization of a continuous-time time-varying systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {11},
     year = {2001},
     pages = {1261-1276},
     zbl = {1031.93064},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv11i6p1261bwm}
}
Iglesias, Pablo; Zang, Guoqiang. Szegő's first limit theorem in terms of a realization of a continuous-time time-varying systems. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) pp. 1261-1276. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv11i6p1261bwm/

[000] Ahiezer N.I. (1964): A functional analogue of some theorems on Toeplitz matrices. — Ukrain. Mat. Ž., Vol.16, pp.445–462. English Transl. (1966): Amer. Math. Soc. Transl., Vol.50, pp.295–316.

[001] Arnold L. (1998): Random Dynamical Systems. — Berlin: Springer. | Zbl 0906.34001

[002] Böttcher A. and Silbermann B. (1999): Introduction to Large Truncated Toeplitz Matrices. — New York: Springer. | Zbl 0916.15012

[003] Coppel W.A. (1978): Dichotomies in Stability Theory. — Berlin: Springer. | Zbl 0376.34001

[004] Dieci L., Russell R.D. and van Vleck E.S. (1997): On the computation of Lyapunov exponents for continuous dynamical systems. — SIAM J. Numer. Anal., Vol.34, No.1, pp.402–423. | Zbl 0891.65090

[005] Dym H. and Ta’assan S. (1981): An abstract version of a limit theorem of Szegő. — J. o Funct. Anal., Vol.43, No.3, pp.294–312. | Zbl 0499.47017

[006] Gohberg I. and Kreĭn M.G. (1969): Introduction to the Theory of Linear, Nonselfadjoint Operators. — Providence, RI: AMS. | Zbl 0181.13504

[007] Gohberg I., Kaashoek M.A. and van Schagen F. (1987): Szegő-Kac-Achiezer formulas in terms of realizations of the symbol. — J. Funct. Anal., Vol.74, No.1, pp.24–51. | Zbl 0621.47028

[008] Grenander U. and Szegő G. (1958): Toeplitz Forms and Their Applications. — Berkeley: University of California. | Zbl 0080.09501

[009] Iglesias P.A. (2001): A time-varying analogue of Jensen’s formula. — Int. Eqns. Oper. Theory, Vol.40, No.1, pp.34–51. | Zbl 1009.93014

[010] Iglesias P.A. (2002): Logarithmic integrals and system dynamics: An analogue of Bode’s sensitivity integral for continuous-time, time-varying systems. — Lin. Alg. Appl., Vol.343– 344, pp.451–471.

[011] Ilchmann A. and Kern G. (1987): Stabilizability of systems with exponential dichotomy. — Syst. Contr. Lett., Vol.8, No.3, pp.211–220. | Zbl 0615.93061

[012] Kac M. (1954): Toeplitz matrices, translation kernels and a related problem in probability theory. — Duke Math. J., Vol.21, pp.501–509. | Zbl 0056.10201

[013] Kalman R.E. (1960): Contributions to the theory of optimal control. — Boletín de la Sociedad Matemática Mexicana, Vol.5, No.2, pp.102–119. | Zbl 0112.06303

[014] Millionščikov V.M. (1969): A proof of the existence of nonregular systems of linear differential equations with quasiperiodic coefficients. — Differencial’nye Uravnenija, Vol.5, pp.1979–1983.

[015] Ravi R., Nagpal K.M. and Khargonekar P.P. (1991): H∞ control of linear time-varying systems: A state-space approach. — SIAM J. Contr. Optim., Vol.29, No.6, pp.1394– 1413. | Zbl 0741.93017

[016] Rugh W.J. (1996): Linear System Theory, 2nd Ed. — Englewood Cliffs, NJ: Prentice-Hall. | Zbl 0892.93002

[017] Sacker R.J. and Sell G.R. (1978): A spectral theory for linear differential systems. — J. Diff. Eqns., Vol.27, No.3, pp.320–358. | Zbl 0372.34027

[018] Vojtenko S.S. (1987): Existence conditions for stabilizing and antistabilizing solutions to the nonautonomous matrix Riccati differential equation. — Kybernetika, Vol.23, No.1, pp.32–43. | Zbl 0623.34006

[019] Zhou K., Doyle J.C. and Glover K. (1996): Robust and Optimal Control. — Upper Saddle River, NJ: Prentice-Hall.