Factorization of the Popov function of a multivariable linear distributed parameter system in the non-coercive case: a penalization approach
Pandolfi, Luciano
International Journal of Applied Mathematics and Computer Science, Tome 11 (2001), p. 1249-1260 / Harvested from The Polish Digital Mathematics Library

We study the construction of an outer factor to a positive definite Popov function of a distributed parameter system. We assume that is a non-negative definite matrix with non-zero determinant. Coercivity is not assumed. We present a penalization approach which gives an outer factor just in the case when there exists any outer factor.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:207553
@article{bwmeta1.element.bwnjournal-article-amcv11i6p1249bwm,
     author = {Pandolfi, Luciano},
     title = {Factorization of the Popov function of a multivariable linear distributed parameter system in the non-coercive case: a penalization approach},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {11},
     year = {2001},
     pages = {1249-1260},
     zbl = {0999.93060},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv11i6p1249bwm}
}
Pandolfi, Luciano. Factorization of the Popov function of a multivariable linear distributed parameter system in the non-coercive case: a penalization approach. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) pp. 1249-1260. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv11i6p1249bwm/

[000] Anderson B.D.O. (1967): A system theory criterion for positive real matrices. — SIAM J. Contr., Vol.5, pp.171–182. | Zbl 0158.03701

[001] Anderson B.D.O. and Vongpanitlered S. (1973): Network Analysis and Synthesis: A Modern Systems Theory Approach. — Englewood Cliffs, N.J: Prentice–Hall.

[002] Balakrishnan A.V. (1995): On a generalization of the Kalman–Yakubovich Lemma. — Appl. Math. Optim., Vol.31, No.2, pp.177–187. | Zbl 0821.47031

[003] Callier F.M. and Winkin J. (1990): On spectral factorization and LQ-optimal regulation for multivariable distributed systems. — Int. J. Contr., Vol.52, No.1, pp.55–75. | Zbl 0713.93024

[004] Callier F.M. and Winkin J. (1992): LQ-optimal control of infinite-dimensional systems by spectral factorization. — Automatica, Vol.28, No.4, pp.757–770. | Zbl 0776.49023

[005] Callier F.M. and Winkin J. (1999): The spectral factorization problem for multivariable distributed parameter systems. — Int. Eqns. Oper. Theory, Vol.34, No.3, pp.270–292. | Zbl 0933.93042

[006] Fattorini O. (1968): Boundary control systems. — SIAM J. Contr. Optim., Vol.6, pp.349–385. | Zbl 0164.10902

[007] Francis B.A., (1987): A Course in H∞ Control Theory. — Berlin: Springer-Verlag.

[008] Garnett J.B., (1981): Bounded Analytic Functions. — New York: Academic Press. | Zbl 0469.30024

[009] Kalman R.E. (1963): Lyapunov functions for the problem of Lur’e in automatic control. — Proc. Nat. Acad. Sci., USA, Vol.49, pp.201–205. | Zbl 0113.07701

[010] Lasiecka I. and Triggiani R. (2000): Control theory for partial differential equations. — Encyclopaedia of Mathematics and its Applications, Vols. 74 and 75, Cambridge: Cambridge University Press. | Zbl 0942.93001

[011] Louis J-Cl. and Wexler D. (1991): The Hilbert space regulator problem and operator Riccati equation under stabilizability. — Annales de la Soc. Scient. de Bruxelles, Vol.105, No.4, pp.137–165. | Zbl 0771.47026

[012] Nikolski N. (1982): Lectures on the Shift Operator. — Berlin: Springer-Verlag.

[013] Pandolfi L. (1994): From singular to regular control systems. — Proc. Conf. Control of Partial Differential Equations, New York: M. Dekker, pp.153–165. | Zbl 0815.93045

[014] Pandolfi L. (1995): The standard regulator problem for systems with input delays: an approach through singular control theory. — Appl. Math. Optim., Vol.31, No.2, pp.119–136. Pandolfi L. (1997): The Kalman–Yakubovich–Popov Theorem: an overview and new results for hyperbolic control systems. — Nonlin. Anal., Vol.30, No.2, pp.735–745.

[015] Pandolfi L. (1998): Dissipativity and Lur’e problem for parabolic boundary control systems. — SIAM J. Contr. Optim., Vol.36, No.6, pp.2061–2081. | Zbl 0913.43001

[016] Pandolfi, L. (1999a): The Kalman-Yakubovich-Popov theorem for stabilizable hyperbolic boundary control systems. — Int. Eqns. Oper. Theory, Vol.34, pp.478–493. | Zbl 0941.93046

[017] Pandolfi L. (1999b): Recent results on the Kalman-Popov-Yakubovich problem. — Proc. Int. Conf. Mathematics and its Applications, Yogyakarta, Indonesia, pp.47–60.

[018] Rosenblum M. and Rovnyak J. (1985): Hardy Classes and Operator Theory. — New York: Oxford U.P. | Zbl 0586.47020

[019] Riesz F. and Sz-Nagy B. (1955): Functional Analysis. — New York: F. Ungar.

[020] Yakubovich V.A. (1973): The frequency theorem in control theory. — Siberian Math. J., Vol.14, pp.384-419.

[021] Youla D.C. (1961): On the factorization of rational matrices. — IRE Trans. Inf. Theory, Vol.IT–7, pp.172–189.