The solutions to the Rational Covariance Extension Problem (RCEP) are parameterized by the spectral zeros. The rational filter with a specified numerator solving the RCEP can be determined from a known convex optimization problem. However, this optimization problem may become ill-conditioned for some parameter values. A modification of the optimization problem to avoid the ill-conditioning is proposed and the modified problem is solved efficiently by a continuation method.
@article{bwmeta1.element.bwnjournal-article-amcv11i5p1173bwm, author = {Enqvist, Per}, title = {A homotopy approach to rational covariance extension with degree constraint}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {11}, year = {2001}, pages = {1173-1201}, zbl = {1031.93076}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv11i5p1173bwm} }
Enqvist, Per. A homotopy approach to rational covariance extension with degree constraint. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) pp. 1173-1201. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv11i5p1173bwm/
[000] Allgower E.L. and Georg K. (1990): Numerical Continuation Methods. — Berlin, New York: Springer.
[001] Allgower E.L. and Georg K. (1993): Continuation and path following. — Acta Numerica, Vol.2, pp.1–64. | Zbl 0792.65034
[002] Arnold V.I. (1983): Geometrical Methods in the Theory of Ordinary Differential Equations. — New York, Berlin: Springer. | Zbl 0507.34003
[003] Bauer F.L. (1955): Ein direktes iterationverfahren zur Hurwitz-zerlegung eines polynoms. — Arch. Elek. Ubertragung, Vol.9, pp.285–290.
[004] Byrnes C.I., Enqvist P. and Lindquist A. (2001): Cepstral coefficients, covariance lags and pole-zero models for finite data strings. — IEEE Trans. Sign. Process, Vol.49, No.4.
[005] Byrnes C.I., Gusev S.V. and Lindquist A. (1999): A convex optimization approach to the rational covariance extension problem. — SIAM J. Contr. Optim., Vol.37, No.1, pp.211– 229. | Zbl 0947.30027
[006] Byrnes C.I., Lindquist A., Gusev S.V. and Matveev A.S. (1995): A complete parametrization of all positive rational extensions of a covariance sequence. — IEEE Trans. Automat. Contr., Vol.40, No.11, pp.1841–1857. | Zbl 0847.93008
[007] Caines P.E. (1987): Linear Stochastic Systems. — New York: Wiley.
[008] Chui C.K. and Chen G. (1992): Signal Processing and Systems Theory. — Berlin: Springer. | Zbl 0824.93002
[009] Davidenko D. (1953): On a new method of numerically integrating a system of nonlinear equations. — Dokl. Akad. Nauk SSSR, Vol.88, pp.601–604 (in Russian).
[010] Den Heijer C. and Rheinboldt W.C. (1981): On steplength algorithms for a class of continuation methods. — SIAM J. Numer. Anal., Vol.18, No.5, pp.925–948. | Zbl 0472.65042
[011] Georgiou T.T. (1983): Partial Realization of Covariance Sequences. — Ph.D. Thesis, University of Florida.
[012] Georgiou T.T. (1987): Realization of power spectra from partial covariance sequences. — IEEE Trans. Acoust. Speech Sign. Process., Vol.ASSP–35, No.4, pp.438–449. | Zbl 0653.93060
[013] Goodman T., Michelli C., Rodriguez G. and Seatzu S. (1997): Spectral factorization of Laurent polynomials. — Adv. Comp. Math., Vol.7, No.4, pp.429–454. | Zbl 0886.65013
[014] Kalman R.E. (1981): Realization of covariance sequences. — Toeplitz Memorial Conference, Tel Aviv, Israel, pp.331–342.
[015] Luenberger D.G. (1984): Linear and Nonlinear Programming. — Reading, Mass.: Addison Wesley. | Zbl 0571.90051
[016] Markel J.D. and Gray Jr. A.H. (1976): Linear Prediction of Speech. — New York: Springer. | Zbl 0443.94002
[017] Nash S.G. and Sofer A. (1996): Linear and Nonlinear Programming. — New York: McGrawHill.
[018] Ortega J.M. and Rheinboldt W.C. (1970): Iterative Solution of Nonlinear Equations in Several Variables. — New York: Academic Press. | Zbl 0241.65046
[019] Porat B. (1994): Digital Processing of Random Signals, Theory & Methods. — Englewood Cliffs. NJ.: Prentice Hall.
[020] Rudin W. (1976): Principles of Mathematical Analysis. — New York: McGraw Hill. | Zbl 0346.26002
[021] Wilson G. (1969): Factorization of the covariance generating function of a pure moving average process. — SIAM J. Numer. Anal., Vol.6, pp.1–7. | Zbl 0176.46401
[022] Wu S-P., Boyd S. and Vandenberghe L. (1997): FIR filter design via spectral factorization and convex optimization, In: Applied Computational Control, Signal and Communications (Biswa Datta, Ed.) — Boston: Birkhäuser, pp.215–245. | Zbl 0963.93026