Many iterative methods for the solution of linear discrete ill-posed problems with a large matrix require the computed approximate solutions to be orthogonal to the null space of the matrix. We show that when the desired solution is not smooth, it may be possible to determine meaningful approximate solutions with less computational work by not imposing this orthogonality condition.
@article{bwmeta1.element.bwnjournal-article-amcv11i5p1069bwm, author = {Calvetti, Daniela and Lewis, Bryan and Reichel, Lothar}, title = {On the choice of subspace for iterative methods for linear discrete ill-posed problems}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {11}, year = {2001}, pages = {1069-1092}, zbl = {0994.65043}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv11i5p1069bwm} }
Calvetti, Daniela; Lewis, Bryan; Reichel, Lothar. On the choice of subspace for iterative methods for linear discrete ill-posed problems. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) pp. 1069-1092. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv11i5p1069bwm/
[000] Baart M.L. (1982): The use of auto-correlation for pseudo-rank determination in noisy ill-conditioned least-squares problems. - IMA J. Numer. Anal., Vol.2, pp.241-247. | Zbl 0484.65021
[001] Björck Å. (1996): Numerical Methods for Least Squares Problems. - Philadelphia: SIAM. | Zbl 0847.65023
[002] Calvetti D., Lewis B. and Reichel L. (2000a): GMRES-type methods for inconsistent systems. - Lin. Alg. Appl., Vol.316, pp.157-169. | Zbl 0963.65042
[003] Calvetti D., Lewis B. and Reichel L. (2000b): Restoration of images with spatially variant blur by the GMRES method, In: Advanced Signal Processing Algorithms, In: Architectures, and Implementations X (F.T. Luk, Ed.). - Proc. Society of Photo-Optical Instrumentation Engineers (SPIE), Vol.4116, Bellingham, WA: The International Society for Optical Engineering, pp.364-374.
[004] Calvetti D., Lewis B. and Reichel L. (2000c): An L-curve for the MINRES method, In: Advanced Signal Processing Algorithms, Architectures, and Implementations X (F.T. Luk, Ed.).- Proc. Society of Photo-Optical Instrumentation Engineers (SPIE), Vol.4116, Bellingham, WA: The International Society for Optical Engineering, pp.385-395.
[005] Calvetti D., Lewis B. and Reichel L. (2002a): GMRES, L-curves,and discrete ill-posed problems. - BIT, Vol.42, pp.44-65. | Zbl 1003.65040
[006] Calvetti D., Lewis B. and Reichel L. (2002b): On the regularizing properties of the GMRES method. - Numer. Math., (to appear). | Zbl 1022.65044
[007] Calvetti D., Reichel L. and Zhang Q. (1994a): An adaptive semiiterative method for symmetric semidefinite linear systems, In: Approximation and Computation (R.V.M. Zahar, Ed.). -Basel: Birkhauser, pp.77-96. | Zbl 0828.65034
[008] Calvetti D., Reichel L. and Zhang Q. (1994b): Conjugate gradient algorithms for symmetric inconsistent linear systems, In: Proceedings of the Cornelius Lanczos International Centenary Conference (J.D. Brown, M.T. Chu, D.C. Ellison and R.J. Plemmons, Eds.).- Philadelphia: SIAM, pp.267-272.
[009] Calvetti D., Reichel L. and Zhang Q. (1999a): Iterative exponential filtering for large discrete ill-posed problems. - Numer. Math., Vol.83, pp.535-556. | Zbl 0947.65039
[010] Calvetti D., Reichel L. and Zhang Q. (1999b): Iterative solution methods for large linear discrete ill-posedproblems. - Appl. Comp. Control Signals and Circuits, Vol.1, pp.313-367. | Zbl 0979.93033
[011] Fischer B. (1996): Polynomial Based Iteration Methods for Symmetric Linear Systems. - New York: Wiley-Teubner. | Zbl 0852.65031
[012] Hanke M. (1995): Conjugate Gradient Type Methods for Ill-Posed Problems. - Harlow: Longman. | Zbl 0830.65043
[013] Hanke M. and Hansen P.C. (1993): Regularization methods for large-scale problems. - Surv. Math. Ind., Vol.3, pp.253-315. | Zbl 0805.65058
[014] Hanke M. and Hochbruck M. (1993): A Chebyshev-like semiiteration for inconsistent linear systems. - Elec. Trans. Numer. Anal., Vol.1, pp.89-103. | Zbl 0809.65039
[015] Hanke M. and Nagy J.G. (1998): Restoring images degraded by spatially-variant blur. - Inv. Problems, Vol.19, pp.1063-1082. | Zbl 0919.65091
[016] Hansen P.C. (1994): Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems. - Numer. Algorithms, Vol.6, pp.1-35. | Zbl 0789.65029
[017] Hansen P.C. (1998): Rank-Deficient and Discrete Ill-Posed Problems. - Philadelphia: SIAM.
[018] Nagy J.G. and O'Leary D.P. (1998): Restoring images degraded by spatially-variant blur. - SIAM J. Sci. Comput., Vol.19, pp.1063-1082. | Zbl 0919.65091
[019] Paige C.C. and Saunders M.A. (1975): Solution of sparse indefinite systems of linear equations. - SIAM J. Numer. Anal., Vol.12, pp.617-629. | Zbl 0319.65025
[020] Phillips D.L. (1962): A technique for the numerical solution of certain integral equations of the first kind. - J. ACM, Vol.9, pp.84-97. | Zbl 0108.29902
[021] Saad Y. (1996): Iterative Methods for Sparse Linear Systems. -Boston: PWS. | Zbl 1031.65047
[022] Saad Y. and Schultz M.H. (1986): GMRES: a generalized minimal residual method for solving nonsymmetric linear systems. - SIAM J. Sci. Stat. Comput., Vol.7, pp.856-869. | Zbl 0599.65018