We address the numerically reliable computation of generalized inverses of rational matrices in descriptor state-space representation. We put particular emphasis on two classes of inverses: the weak generalized inverse and the Moore-Penrose pseudoinverse. By combining the underlying computational techniques, other types of inverses of rational matrices can be computed as well. The main computational ingredient to determine generalized inverses is the orthogonal reduction of the system matrix pencil to appropriate Kronecker-like forms.
@article{bwmeta1.element.bwnjournal-article-amcv11i5p1055bwm, author = {Varga, Andras}, title = {Computing generalized inverse systems using matrix pencil methods}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {11}, year = {2001}, pages = {1055-1068}, zbl = {1031.93071}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv11i5p1055bwm} }
Varga, Andras. Computing generalized inverse systems using matrix pencil methods. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) pp. 1055-1068. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv11i5p1055bwm/
[000] Antsaklis P. (1978): Stable proper nth-order inverses. — IEEE Trans. Automat. Contr., Vol.23, No.6, pp.1104–1106. | Zbl 0388.93023
[001] Ben Israel A. and Greville T.N.E. (1976): Some topics in generalized inverses of matrices, In: Generalized Inverses and Applications (M.Z. Nashed, Ed.). — New York: Academic Press, pp.125–147. | Zbl 0345.15002
[002] Benner P., Mehrmann V., Sima V., Van Huffel S. and Varga A. (1999): SLICOT—A subroutine library in systems and control theory, In: Applied and Computational Control, Signals and Circuits (B.N. Datta, Ed.). — Boston: Birkhäuser, Vol.1, pp.499–539. | Zbl 1051.93500
[003] Campbell S.L. and Meyer C.D. (1991): Generalized Inverses of Linear Transformations. — New York: Dover Publications, Inc. | Zbl 0732.15003
[004] Campbell S.L. and Rakowski M. (1994): Explicit formulae for completions of linear time varying DAEs. — Circ. Syst. Signal Process., Vol.13, No.2–3, pp.185–199. | Zbl 0804.34002
[005] Misra P., Van Dooren P. and Varga A. (1994): Computation of structural invariants of generalized state-space systems. — Automatica, Vol.30, No.12, pp.1921–1936. | Zbl 0816.93040
[006] Morse A.S. (1976): Minimal solutions to transfer matrix equations. — IEEE Trans. Automat. Contr., Vol.21, No.1, pp.131–133. | Zbl 0321.93012
[007] Oară C. and Varga A. (1999): The general inner-outer factorization problem for discrete-time systems. — Proc. ECC’99, Karlsruhe, Germany, (published on CD-ROM). | Zbl 0971.65057
[008] Oară C. and Varga A. (2000): Computation of general inner-outer and spectral factorizations. — IEEE Trans. Automat. Contr., Vol.45, No.12, pp.2307–2325. | Zbl 0990.93019
[009] Oară C. (2000): A QR factorization of a rational matrix: The class of solutions and applications in systems theory. — Proc. MTNS 2000, Perpignan, France (published on CD-ROM).
[010] Rakowski M. (1991): Generalized pseudoinverses of matrix valued functions. — Int. Eqns. Oper. Theory, Vol.14, No.4, pp.564–585. | Zbl 0735.15003
[011] Sontag E. (1980): On generalized inverses of polynomial and other matrices. — IEEE Trans. Automat. Contr., Vol.25, No.3, pp.514–517. | Zbl 0447.15003
[012] Varga A. (1995): On stabilization of descriptor systems. — Syst. Contr. Lett., Vol.24, No.2, pp.133–138. | Zbl 0877.93092
[013] Varga A. (1996): Computation of Kronecker-like forms of a system pencil: Applications, algorithms and software. — Proc. CACSD’96 Symposium, Dearborn, MI, pp.77–82.
[014] Varga A. (1998): Computation of inner-outer factorizations of rational matrices. — IEEE Trans. Automat. Contr., Vol.43, No.5, pp.684–688. | Zbl 0907.65020
[015] Varga A. (2000): A descriptor systems toolbox for Matlab. — Proc. CACSD 2000 Symposium, Anchorage, Alaska.
[016] Varga A. and Katayama T. (1998): Computation of J-inner-outer factorizations of rational matrices. — Int. J. Robust Nonlin. Contr., Vol.8, No.3, pp.245–263. | Zbl 0910.93029
[017] Wang S.-H. and Davison E.J. (1973): A minimization algorithm for the design of linear multivariable systems. — IEEE Trans. Automat. Contr., Vol.18, No.3, pp.220–225. | Zbl 0261.93010
[018] Wolovich W.A., Antsaklis P. and Elliott H. (1977): On the stability of solutions to minimal and nonminimal design problems. — IEEE Trans. Automat. Contr., Vol.22, No.1, pp.88– 94. | Zbl 0346.93037
[019] Wonham W.M. (1979): Linear Multivariable Control: a Geometric Approach. — New York: Springer Verlag. | Zbl 0424.93001