Recursive identification of Wiener systems
Greblicki, Włodzimierz
International Journal of Applied Mathematics and Computer Science, Tome 11 (2001), p. 977-991 / Harvested from The Polish Digital Mathematics Library

A Wiener system, i.e. a cascade system consisting of a linear dynamic subsystem and a nonlinear memoryless subsystem is identified. The a priori information is nonparametric, i.e. neither the functional form of the nonlinear characteristic nor the order of the dynamic part are known. Both the input signal and the disturbance are Gaussian white random processes. Recursive algorithms to estimate the nonlinear characteristic are proposed and their convergence is shown. Results of numerical simulation are also given. A known algorithm recovering the impulse response of the dynamic part is presented in a recursive form.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:207541
@article{bwmeta1.element.bwnjournal-article-amcv11i4p977bwm,
     author = {Greblicki, W\l odzimierz},
     title = {Recursive identification of Wiener systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {11},
     year = {2001},
     pages = {977-991},
     zbl = {1001.93085},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv11i4p977bwm}
}
Greblicki, Włodzimierz. Recursive identification of Wiener systems. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) pp. 977-991. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv11i4p977bwm/

[000] Ahmad I.P. and Lin N. (1976): Nonparametric sequential estimation of multiple regression function. — Bull. Math. Statist., Vol.17, pp.63–75. | Zbl 0372.62026

[001] Billings S. (1980): Identification of nonlinear systems — A survey. — IEE Proc., Vol.127, pp.272–285.

[002] Billings S. and Fakhouri S. (1977): Identification of nonlinear systems using the Wiener model. — Electron. Lett., Vol.13, pp.502–504.

[003] Billings S. and Fakhouri S. (1978): Theory of separable processes with applications to the identification of nonlinear systems. — IEE Proc., Vol.125, pp.1051–1058.

[004] Brillinger D. (1977): The identification of a particular nonlinear time series system. — Biometrica, Vol.64, pp.509–515. | Zbl 0388.62084

[005] Collomb M. (1977): Quelques proprietés de la méthode du noyau pour l’estimation non paramétrique de la régression en un point fixé. — C. R. Acad. Sc. Paris, Vol.285, pp.289–292 (in French). | Zbl 0375.62042

[006] den Brinker A. (1989): A comparison of results from parameter estimations of impulse responses of the transient visual system. — Biol. Cybern., Vol.61, pp.139–151.

[007] Devroye L. and Wagner T. (1980): On the L1-convergence of kernel estimators of regression functions with application in discrimination. — Z. Wahrsch. Verv. Gebiete, Vol.51, pp.15–25. | Zbl 0396.62044

[008] Greblicki W. (1992): Nonparametric identification of Wiener systems. — IEEE Trans. Inf. Theory, Vol.38, pp.1487–1493. | Zbl 0767.93012

[009] Greblicki W. (1997): Nonparametric approach to Wiener system identification. — IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications, Vol.44, pp.538– 545.

[010] Greblicki W. and Pawlak M. (1987): Necessary and sufficient consistency conditions for a recursive kernel regression estimate. — J. Multivar. Anal., Vol.23, pp.67–76. | Zbl 0627.62040

[011] Hunter I. and Korenberg M. (1986): The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. — Biol. Cybern., Vol.55, pp.135–144. | Zbl 0611.92002

[012] Kalafatis A., Afirin N., Wang L. and Cluett W. (1995): A new approach to the identification of pH processes based on the Wiener model. — Chem. Eng. Sci., Vol.23, pp.3693–3701.

[013] Krzyzak A. and Pawlak M. (1984): Almost everywhere convergence of a recursive regression estimate and classification. — IEEE Trans. Inf. Theory, Vol.30, pp.91–93. | Zbl 0534.62023

[014] Krzyżak A. and Partyka A.M. (1993): On identificcation of block oriented systems by nonparametric techniques. — Int. J. Syst. Sci., Vol.24, pp.1049–1066. | Zbl 0773.93014

[015] Nadaraya E. (1964): On regression estimators. — Theory Prob. Appl., Vol.9, pp.157–159. | Zbl 0136.40902

[016] Watson G. (1964): Smooth regression analysis. — Sankhyā, Ser. A, Vol. 26, pp.359–372. | Zbl 0137.13002

[017] Westwick D. and Kearney R. (1992): A new algorithm for the identification of multiple input Wiener systems. — Biol. Cybern., Vol.68, pp.75–85. | Zbl 0758.92001

[018] Westwick D. and Verhaegen M. (1996): Identifying MIMO Wiener systems using subspace model identification methods. — Signal Process., Vol.52, pp.235–258. | Zbl 0875.93093

[019] Wheeden R. and Zygmund A. (1977): Measure and Integral. — New York: Dekker.

[020] Wigren T. (1993): Recursive prediction error identification using the nonlinear Wiener model. — Automatica, Vol.29, pp.1011–1025. | Zbl 0776.93006