Approximation of a solidification problem
Aboulaïch, Rajae ; Haggouch, Ilham ; Souissi, Ali
International Journal of Applied Mathematics and Computer Science, Tome 11 (2001), p. 921-955 / Harvested from The Polish Digital Mathematics Library

A two-dimensional Stefan problem is usually introduced as a model of solidification, melting or sublimation phenomena. The two-phase Stefan problem has been studied as a direct problem, where the free boundary separating the two regions is eliminated using a variational inequality (Baiocchi, 1977; Baiocchi et al., 1973; Rodrigues, 1980; Saguez, 1980; Srunk and Friedman, 1994), the enthalpy function (Ciavaldini, 1972; Lions, 1969; Nochetto et al., 1991; Saguez, 1980), or a control problem (El Bagdouri, 1987; Peneau, 1995; Saguez, 1980). In the present work, we provide a new formulation leading to a shape optimization problem. For a semidiscretization in time, we consider an Euler scheme. Under some restrictions related to stability conditions, we prove an L^2 -rate of convergence of order 1 for the temperature. In the last part, we study the existence of an optimal shape, compute the shape gradient, and suggest a numerical algorithm to approximate the free boundary. The numerical results obtained show that this method is more efficient compared with the others.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:207538
@article{bwmeta1.element.bwnjournal-article-amcv11i4p921bwm,
     author = {Aboula\"\i ch, Rajae and Haggouch, Ilham and Souissi, Ali},
     title = {Approximation of a solidification problem},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {11},
     year = {2001},
     pages = {921-955},
     zbl = {1015.80008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv11i4p921bwm}
}
Aboulaïch, Rajae; Haggouch, Ilham; Souissi, Ali. Approximation of a solidification problem. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) pp. 921-955. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv11i4p921bwm/

[000] Baiocchi C., Comincioli V., Magenes E. and Pozzi G.A.(1973): Free boundary problems in the theory of fluid flow through porousmedia. Existence and uniqueness theorems. - Annali Mat. Pura App., Vol.4, No.97, pp.1-82. | Zbl 0343.76036

[001] Baiocchi C. (1977): Problèmes à frontière libre en hydraulique: milieu non homogène. - Annali della Scuola Norm. Sup. di Pisa, Vol.28, pp.429-453. | Zbl 0386.35044

[002] Ciavaldini J.F. (1972): Resolution numerique d'un problème de Stefan à deux phases. - Ph.D. Thesis, Rennes, France.

[003] El Bagdouri M. (1987): Commande optimale d'un système thermique non-lineaire. - Thèse de Doctorat d'Etates-Sciences, Ecole Nationale Superieure de Mecanique, Universite de Nantes.

[004] Haggouch I. (1997): Resolution d'un problème de Stefan à deux phases par la methode d'optimisation de forme. - Ph.D. Thesis, Rabat, Morocco.

[005] Haslinger J. and Neittaanmaki P. (1988): Finite Element Approximation for Optimal Shape Design. Theory and Application. - New York: Wiley. | Zbl 0713.73062

[006] Humeau J.P. and Souza del Cursi J.E. (1993): Regularisation and numerical resolution of a two-dimensional Stefan problem. - J. Math. Syst. Estim. Contr., Vol.3, No.4, pp.473-497. | Zbl 0800.93598

[007] Lions J.L. (1968): Contrôle Optimal d'un Système Gouverne par des Equations aux Derivees Partielles. - Paris: Dunod.

[008] Lions J.L. (1969): Quelques Methodes de Resolution des Problèmes aux Limites Non Lineaires. - Paris: Dunod. | Zbl 0189.40603

[009] Lyaghfouri A. (1996): The inhomogeneous dam with linear Darcy's law and Dirichlet boundary conditions. - Math. Models Meth. Appl. Sci., Vol.6, No.8, pp.1051-1077. | Zbl 0869.76088

[010] Nochetto R.H., Paolin M. and Verdi C. (1991): Anadaptive finite element method for two phase Stefan problems in two space dimension, Part 1: Stability and error estimates. - Math. Comp., Vol.57, No.57, pp.73-108, S1-S11 (supplement); Part 2: Implementation and Numerical Experiments. - SIAM J. Sci.Stat. Comput., Vol.12, No.5, pp.1207-1244.

[011] Peneau S. (1995): Contrôle optimal et optimisation de forme dans des problèmes à frontière libre. Application à un système thermique avec changement de phase. - Ph.D., Ecole Central de Nantes, France.

[012] Pironneau O. (1983): Optimal Shape Design for Elliptic Systems. - Berlin: Springer. | Zbl 0496.93029

[013] Raviart P.A. and Girault V. (1981): Finite Element Approximation of the Navier-Stokes Equations. - Berlin: Springer. | Zbl 0441.65081

[014] Rodrigues J.F. (1980): Sur la cristallisation d'un métal en coulée continue par des méthodes variationnelles. - Ph.D. Thesis, Universite Paris 6.

[015] Saguez C. (1980): Contrôle optimal de systèmes à frontière libre. - Ph.D. Thesis, Université de Technologie de Compiègne, France. | Zbl 0439.73076

[016] Srunk and Friedman A. (1994): Variational and Free Boundary Problems. - Berlin: Springer.

[017] Zolésio J.P. (1981): The material derivative (or speed method) for shape optimisation, In: Optimisation of Parameter Structures, Vol.II (E.J. Haug and J. Cea, Eds.). - Alphen aan den Rijn, the Netherlands: Sijthoff, pp.1098-1151.

[018] Zolésio J.P. (1979): Identification de domaines par déformations. - Thèse d'Etat, Université de Nice, France.