Spatial compensation of boundary disturbances by boundary actuators
Afifi, Larbi ; Chafiai, Abdelhakim ; El Jai, Abdelhaq
International Journal of Applied Mathematics and Computer Science, Tome 11 (2001), p. 899-920 / Harvested from The Polish Digital Mathematics Library

In this paper we show how to find convenient boundary actuators, termed boundary efficient actuators, ensuring finite-time space compensation of any boundary disturbance. This is the so-called remediability problem. Then we study the relationship between this remediability notion and controllability by boundary actuators, and hence the relationship between boundary strategic and boundary efficient actuators. We also determine the set of boundary remediable disturbances, and for a boundary disturbance, we give the optimal control ensuring its compensation.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:207537
@article{bwmeta1.element.bwnjournal-article-amcv11i4p899bwm,
     author = {Afifi, Larbi and Chafiai, Abdelhakim and El Jai, Abdelhaq},
     title = {Spatial compensation of boundary disturbances by boundary actuators},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {11},
     year = {2001},
     pages = {899-920},
     zbl = {1058.93030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv11i4p899bwm}
}
Afifi, Larbi; Chafiai, Abdelhakim; El Jai, Abdelhaq. Spatial compensation of boundary disturbances by boundary actuators. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) pp. 899-920. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv11i4p899bwm/

[000] Afifi L., Chafiai A. and El Jai A. (1998): Compensation spatiale en temps fini dans les systèmes distribués. — L.T.S. Université de Perpignan, Rapport Interne N 14/98.

[001] Afifi L., Chafiai A. and El Jai A. (1999): Regionally efficient and strategic actuators. — Int. J. Syst. Sci. (to appear). | Zbl 1013.93029

[002] Afifi L., Chafiai A. and El Jai A. (2000): Remédiabilité régionale dans les systèmes distribués discrets. — Les cahiers de la recherche, Université Hassan II-Ain Chock, Morocco, Vol.II, No.1, pp.71–91.

[003] Berrahmoune L. (1984): Localisation d’actionneurs pour la contrôlabilité de systèmes paraboliques et hyperboliques. Applications par dualité a la localisation de capteurs. — Ph.D. Thesis, Faculté des Sciences, Rabat, Morocco.

[004] Curtain R.F. and Pritchard A.J. (1978): Infinite Dimensional Linear Systems Theory. — Berlin: Springer.

[005] El Jai A. (1991): Distributed systems analysis via sensors and actuators. — Int. J. Sens. Actuat., Vol.29, No.1, pp.1–11.

[006] El Jai A. and Pritchard A.J. (1988): Sensors and Actuators in Distributed Systems Analysis. — Paris: Wiley. | Zbl 0637.93001

[007] Lions J.L. (1988): Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués. — Paris: Masson. | Zbl 0653.93002

[008] Lions J.L. and Magenes E. (1968): Problèmes aux Limites non Homogènes et Applications. — Paris: Dunod. | Zbl 0165.10801

[009] Malabre M. and Rabah R. (1993): Structure at infinity, model matching and disturbance rejection for linear systems with delays. — Kybernetika, Vol.29, No.5, pp.485–498. | Zbl 0805.93008

[010] Necas J. (1967): Les méthodes directes en théorie des équations elliptiques. — Prague: Ed. Acad. Tchécoslovaque des Sciences.

[011] Otsuka N. (1991): Simultaneous decoupling and disturbance rejection problems for infinite dimensional systems. — IMA J. Math. Contr. Inf., Vol.8, pp.165–178. | Zbl 0759.93019

[012] Pandolfi L. (1986): Disturbance decoupling and invariant subspaces for delay systems. — Appl. Math. Optim., Vol.14, pp.55–72. | Zbl 0587.93039

[013] Rabah R. and Malabre M. (1997): A note on decoupling for linear infinite dimensional systems. — Proc. 4-th IFAC Conf. System Structure and Control, Bucharest, Romania, pp.87–83.

[014] Senamel O., Rabah R. and Lafy J.F. (1995): Decoupling without prediction of linear systems with delays: A structural approach. — Syst. Contr. Lett., Vol.25, pp.387–395.