A 3D nonhydrostatic, Navier-Stokes solver has been employed to simulate gravity wave induced turbulence at mesopause altitudes. This paper extends our earlier 2D study reported in the literature to three spatial dimensions while maintaining fine resolution required to capture essential physics of the wave breaking. The calculations were performed on the 512 processor Cray T3E machine at the National Energy Research Scientific Computing Center (NERSC) in Berkeley. The physical results of this study clearly demonstrate advantages of highly parallel technologies. We briefly outline the physical outcome of the study, as well as compare the relative model performance across several machines using both MPI and Shmem communication software.
@article{bwmeta1.element.bwnjournal-article-amcv11i4p883bwm, author = {Prusa, Joseph and Smolarkiewicz, Piotr and Wyszogrodzki, Andrzej}, title = {Simulations of gravity wave induced turbulence using 512 PE Cray T3E}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {11}, year = {2001}, pages = {883-897}, zbl = {1057.76538}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv11i4p883bwm} }
Prusa, Joseph; Smolarkiewicz, Piotr; Wyszogrodzki, Andrzej. Simulations of gravity wave induced turbulence using 512 PE Cray T3E. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) pp. 883-897. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv11i4p883bwm/
[000] Anderson W.D. and Smolarkiewicz P.K. (1997): A comparison of High Performance Fortran and message passing parallelization of a geophysical fluid model, In: Parallel Computational Fluid Dynamics: Algorithms and Results Using Advanced Computers (P. Schiano, A. Ecer, J. Periaux, N. Satofuka, Eds). — Amsterdam: Elsevier, pp.384–391.
[001] Anderson W.D., Grubišić V. and Smolarkiewicz P.K. (1997): Performance of a massively parallel 3D non-hydrostatic atmospheric fluid model. — Proc. Int. Conf. Parallel and Distributed Processing Techniques and Applications, PDPTA’97, Las Vegas, pp.645– 651.
[002] Aris R. (1989): Vectors, Tensors, and the Basic Equations of Fluid Mechanics. — New York: Dover Publications. | Zbl 1158.76300
[003] Bath M. (1974): Spectral Analysis in Geophysics, Developments in Solid Earth Geophysics. — Amsterdam: Elsevier.
[004] Briggs W.L. and Henson V.E. (1995): The DFT. — Philadelphia: Soc. Appl. Ind. Math.
[005] Chorin A.J. (1968): Numerical solution of the Navier-Stokes equations. — Math. Comp., Vol.22, No.104, pp.742–762. | Zbl 0198.50103
[006] Gal-Chen T. and Somerville C.J. (1975): On the use of a coordinate transformation for the solution of the Navier-Stokes equations. — J. Comput. Phys., Vol.17, No.2, pp.209– 228. | Zbl 0297.76020
[007] Garcia R.R. and Solomon S. (1985): The effects of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. — J. Geophys. Res., Vol.90, No.D2, pp.3850–3868. rabowski W.W. and Smolarkiewicz P.K. (1996): On two-time level semi-Lagrangian modeling of precipitating clouds. — Mon. Wea. Rev., Vol.124, No.3, pp.487–497.
[008] Johnson K.W., Bauer J., Riccardi G.A., Droegemeier K.K. and Xue M. (1994): Distributed processing of a regional prediction model. — Mon. Wea. Rev., Vol.122, No.11, pp.2558– 2572.
[009] Kraichnan R.H. (1967): Inertial ranges in two-dimensional turbulence. — Phys. Fluids, Vol.10, No.7, pp.1417–1423.
[010] Lipps F.B. and Hemler R.S. (1982): A scale analysis of deep moist convection and some related numerical calculations. — J. Atmos. Sci., Vol.39, No.10, pp.2192–2210.
[011] Prusa J.M., Smolarkiewicz P.K. and Garcia R.R. (1996): On the propagation and breaking at high altitudes of gravity waves excited by tropospheric forcing. — J. Atmos. Sci., Vol.53, No.15, pp.2186–2216.
[012] Prusa J.M., Garcia R.R. and Smolarkiewicz P.K. (1997): Three-dimensional evolution of gravity wave breaking in the mesosphere. — Proc. 11th Conf. Atmos. Ocean. Fluid Dynamics, Tacoma, WA, pp.J3–J4.
[013] Prusa J.M., Smolarkiewicz P.K. and Wyszogrodzki A.A. (1999): Parallel computation of gravity wave turbulence in the Earth’s atmosphere. — Apps. Adv. Archit. Comp., SIAM News, Vol.53, No.7, pp.1, 10–12.
[014] Schumann U. (1991): Subgrid length-scales for large-eddy simulation of stratified turbulence. — Theoret. Comput. Fluid Dynamics, Vol.2, No.5, pp.279–290. | Zbl 0732.76045
[015] Scinocca J.F. (1995): The mixing of mass and momentum by Kelvin-Helmholtz billows. — J. Atmos. Sci., Vol.52, No.14, pp.2509–2530.
[016] Smagorinsky J. (1993): Some historical remarks on the use of nonlinear viscosities, In: Large Eddy Simulation of Complex Engineering and Geophysical Flows (B. Galperin and S.A. Orszag, Eds.). — Cambridge: Cambridge University Press, pp.3–36.
[017] Smolarkiewicz P.K. and Pudykiewicz J.A. (1992): A class of semi-Lagrangian approximations for fluids. — J. Atmos. Sci., Vol.49, No.22, pp.2082–2096.
[018] Smolarkiewicz P.K. and Margolin L.G. (1993): On forward-in-time differencing for fluids: Extension to curvilinear coordinates. — Mon. Wea. Rev., Vol.121, No.6, pp.1847–1859.
[019] Smolarkiewicz P.K. and Margolin L.G. (1994): Variational solver for elliptic problems in atmospheric flows. — Appl. Math. Comp. Sci., Vol.4, No.4, pp.527–551. | Zbl 0849.76052
[020] Smolarkiewicz P.K. and Margolin L.G. (1997): On forward-in-time differencing for fluids: An Eulerian/semi-Lagrangian nonhydrostatic model for stratified flows. — Atmos.- Ocean Special, Vol.35, No.1, pp.127–152.
[021] Smolarkiewicz P.K. and Margolin L.G. (1998): MPDATA: A finite-difference solver for geophysical flows. — J. Comput. Phys., Vol.140, No.2, pp.459–480. | Zbl 0935.76064
[022] Smolarkiewicz P.K., Grubišić V. and Margolin L.G. (1997): On forward-in-time differencing for fluids: Stopping criteria for iterative solutions of anelastic pressure equations. — Mon. Wea. Rev., Vol.125, No.4, pp.647–654.
[023] Weinstock J. (1985): Theoretical gravity wave spectrum in the atmosphere: Strong and weak wave interactions. — Radio Sci., Vol.20, No.6, pp.1295–1300.