Identification of a quasilinear parabolic equation from final data
Fernández, Luis a. ; Pola, Cecilia
International Journal of Applied Mathematics and Computer Science, Tome 11 (2001), p. 859-879 / Harvested from The Polish Digital Mathematics Library

We study the identification of the nonlinearities A,(→)b and c appearing in the quasilinear parabolic equation y_t − div(A(y)∇y + (→)b(y)) + c(y) = u inΩ × (0,T), assuming that the solution of an associated boundary value problem is known at the terminal time, y(x,T), over a (probably small) subset of Ω, for each source term u. Our work can be divided into two parts. Firstly, the uniqueness of A,(→)b and c is proved under appropriate assumptions. Secondly, we consider a finite-dimensional optimization problem that allows for the reconstruction of the nonlinearities. Some numerical results in the one-dimensional case are presented, even in the case of noisy data.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:207535
@article{bwmeta1.element.bwnjournal-article-amcv11i4p859bwm,
     author = {Fern\'andez, Luis a. and Pola, Cecilia},
     title = {Identification of a quasilinear parabolic equation from final data},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {11},
     year = {2001},
     pages = {859-879},
     zbl = {1006.93015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv11i4p859bwm}
}
Fernández, Luis a.; Pola, Cecilia. Identification of a quasilinear parabolic equation from final data. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) pp. 859-879. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv11i4p859bwm/

[000] Banks H.T. and Kunisch K. (1989): Estimation Techniques for Distributed Parameter Systems. - Boston: Birkhauser. | Zbl 0695.93020

[001] Barbu V. and Kunisch K. (1995): Identification of nonlinear parabolic equations. - Contr. Theory Adv. Tech., Vol.10, No.4, pp.1959-1980.

[002] Chavent G. and Lemonnier P. (1974): Identification de la non-linéarite d'une équation parabolique quasilinéaire. - Appl. Math. Optim., Vol.1, No.2, pp.121-162. | Zbl 0291.35049

[003] Fernández L.A. and Zuazua E. (1999): Approximate controllability for the semilinear heat equation involving gradient terms. - J. Optim. Th. Appl., Vol.101, No.2, pp.307-328. | Zbl 0952.49003

[004] Gilbarg D. and Trudinger N.S. (1977): Elliptic Partial Differential Equations of Second Order. - Berlin: Springer. | Zbl 0361.35003

[005] Hanke M. and Scherzer O. (1999): Error analysis of an equation error method for the identification of the diffusion coefficientin a quasi-linear parabolic differential equation. - SIAM J.Appl. Math., Vol.59, No.3, pp.1012-1027. | Zbl 0928.35198

[006] Kärkkäinen T. (1996): A linearization technique and error estimates for distributed parameter identification in quasilinear problems. - Numer. Funct. Anal. Optim., Vol.17, No.3-4, pp.345-364. | Zbl 0858.65127

[007] Kunisch K. and Zou J. (1998): Iterative choices of regularization parameters in linear inverse problems. - Inverse Problems, Vol.14, No.5, pp.1247-1264. | Zbl 0917.65053

[008] Ladyzhenskaya O.A., Solonnikov V.A. and Ural'tseva N.N.(1968): Linear and Quasilinear Equations of Parabolic Type.- Rhode Island: A.M.S.

[009] Lions J.L. (1971): Optimal Control of Systems Governed by Partial Differential Equations. - Berlin: Springer. | Zbl 0203.09001

[010] Lunardi A. and Vespri V. (1991): Holder regularity invariational parabolic non-homogeneous equations. - J. Diff. Eqns., Vol.94, No.1, pp.1-40. | Zbl 0794.35021