Separation principle for nonlinear systems: a bilinear approach
Hammami, Mohamed ; Jerbi, Hamadi
International Journal of Applied Mathematics and Computer Science, Tome 11 (2001), p. 481-492 / Harvested from The Polish Digital Mathematics Library

In this paper we investigate the local stabilizability of single-input nonlinear affine systems by means of an estimated state feedback law given by a bilinear observer. The associated bilinear approximating system is assumed to be observable for any input and stabilizable by a homogeneous feedback law of degree zero. Furthermore, we discuss the case of planar systems which admit bad inputs (i.e. the ones that make bilinear systems unobservable). A separation principle for such systems is given.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:207516
@article{bwmeta1.element.bwnjournal-article-amcv11i2p481bwm,
     author = {Hammami, Mohamed and Jerbi, Hamadi},
     title = {Separation principle for nonlinear systems: a bilinear approach},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {11},
     year = {2001},
     pages = {481-492},
     zbl = {0989.93044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv11i2p481bwm}
}
Hammami, Mohamed; Jerbi, Hamadi. Separation principle for nonlinear systems: a bilinear approach. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) pp. 481-492. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv11i2p481bwm/

[000] Baccioti A. and Boieri P. (1991): A characterization of single input planar bilinear systems which admit a smooth stabilizer. -Syst. Contr. Lett., Vol.16, pp.139-143. | Zbl 0732.93067

[001] Boothby W. and Marino R. (1989): Feedback stabilization of planar nonlinear systems. - Syst. Contr. Lett., Vol.12, pp.87-92. | Zbl 0684.93062

[002] Bornard G., Couenne N. and Celle F. (1989): Regularly persistent observers for bilinear systems. - Berlin: Springer, Contr. Inform. Sci., pp.130-140. | Zbl 0676.93031

[003] Chabour R. and Hammouri H. (1993): Stabilization of planar bilinear systems using an observer configuration. - Appl. Math. Lett., Vol.6, pp.7-10. | Zbl 0774.93014

[004] Chabour R., Sallet G. and Vivalda J.C. (1996): Stabilization of nonlinear two dimensional systems: A bilinear approach. -Math. Contr. Signal Syst., pp.224-246. | Zbl 0797.93038

[005] Chabour R. and Vivalda J.C. (1991): Stabilisation des systèmes bilineaires dans le plan par une commande non reguliere. - Proc. European Control Conference, ECC'91, Grenoble, France, pp.485-487.

[006] Dayawansa W.P., Martin C.F. and Knowles G. (1990): Asymptotic stabilization of a class smooth two-dimensional systems. - SIAM J. Contr. Optim., Vol.28, pp.1321-1349. | Zbl 0731.93076

[007] Gauthier J.P. and Kupka I. (1992): A separation principle for bilinear systems with dissipative drift. - IEEE Trans. Automat. Contr., Vol. AC-37, No.12, pp.1970-1974. | Zbl 0778.93102

[008] Hahn W. (1967) Stability of Motion. -Berlin: Springer. | Zbl 0189.38503

[009] Hammami M.A. (1993): Stabilization of a class of nonlinear systems using an observer design. - Proc. 32nd IEEE Conf. Decision and Control, San Antonio, Texas, Vol.3, pp.1954-1959.

[010] Hammami M.A. and Jerbi H. (1994): On the stabilization of homogeneous cubic vector fields in the plane. - Appl. Math. Lett., Vol.7, No.4,pp.95-99. | Zbl 0804.93040

[011] Jerbi H. (1994): Quelques resultats sur la stabilization des systèmes non lineaires par estimation et retour d'etat. -Ph.D. Thesis, University of Metz, France.

[012] Massera J.L. (1956): Contribution to stability theory. -Annals of Mathematics, Vol.64, pp.182-206. | Zbl 0070.31003

[013] Seibert P. and Suarez R. (1990): Global stabilization of nonlinear cascade systems. - Syst. Contr. Lett., Vol.14, pp.347-352. | Zbl 0699.93073

[014] Vidyasagar M. (1980): On the stabilization of nonlinear systems using state detection. - IEEE Trans. Automat. Contr., Vol.AC-25, pp.504-509. | Zbl 0429.93046