Admissible disturbance sets for discrete perturbed systems
Bouyaghroumni, Jamal ; El Jai, Abdelhaq ; Rachik, Mostafa
International Journal of Applied Mathematics and Computer Science, Tome 11 (2001), p. 349-367 / Harvested from The Polish Digital Mathematics Library

We consider a discrete disturbed system given by the difference bilinear equation where are disturbances which excite the system in a linear and a bilinear form. We assume that the system is augmented with the output function. Let be a tolerance index on the output. The disturbance is said to be -admissible if, where is the output signal associated with the case of an uninfected system. The set of all -admissible disturbances is the admissible set. The characterization of is investigated and numerical simulations are given.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:207510
@article{bwmeta1.element.bwnjournal-article-amcv11i2p349bwm,
     author = {Bouyaghroumni, Jamal and El Jai, Abdelhaq and Rachik, Mostafa},
     title = {Admissible disturbance sets for discrete perturbed systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {11},
     year = {2001},
     pages = {349-367},
     zbl = {0980.93048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv11i2p349bwm}
}
Bouyaghroumni, Jamal; El Jai, Abdelhaq; Rachik, Mostafa. Admissible disturbance sets for discrete perturbed systems. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) pp. 349-367. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv11i2p349bwm/

[000] Afifi L. and ElL Jai A. (1994): Strategic sensors and spy sensors. -Appl. Math. Comp. Sci., Vol.4, No.4, pp.553-573. | Zbl 0823.93011

[001] Balakrishnan A.V. (1976): Applied Functional Analysis. - London: Springer. | Zbl 0333.93051

[002] Bensoussan A. and Viot M. (1975): Optimal control of stochastic linear distributed parameter systems. - SIAM J. Control, Vol.13, pp.904-926. | Zbl 0276.93058

[003] Curtain R.F. and Pritchard A.J. (1978): Infinite Dimensional Linear Systems Theory. - Berlin: Springer. | Zbl 0389.93001

[004] Curtain R.F. and Zwart H.J. (1995): An Introduction to Infinite-Dimensional Linear Systems Theory. -New York: Springer. | Zbl 0839.93001

[005] Francis D. (1987): A Course in H_∞-Control Theory. - Berlin: Springer Verlag.

[006] Kitamura S. and Nakagiri S. (1977): Identifiability of spatially varying and constant parameters in distributed systems of parabolic type. - SIAM. J. Contr. Optim., Vol.15, No.5. | Zbl 0354.93020

[007] Lions J.L. (1988): Sur les sentinelles des systèmes distribues. - C.R.A.S. Paris, T.307. | Zbl 0664.93041

[008] Lions J.L. (1990): Furtivité et sentinelles pour les systèmes distribués à donnees in complètes. -C.R.A.S. Paris. | Zbl 0723.93036

[009] Rachik M., Labriji E., Abkari A. and Bouyaghroumni J. (2000): Infected discrete linear systems: On the admissible sources. -Optimization, Vol.00, pp.1-19. | Zbl 0978.93044

[010] Rachik M., Abdelhak A. and Karrakchou J. (1997): Discrete systems with delays in state, control and observation: The maximal output sets with state and control constraints. - Optimization, Vol.42, pp.169-183. | Zbl 0892.93045

[011] Suzuki T. and Murayama R. (1980): A unique theorem in an identification problem for coefficient of parabolic equations. - Proc. Japan Acad. Ser. A. Math. Sc., Vol.56, pp.259-263. | Zbl 0473.35076

[012] Wonham N.M. (1968): On the separation principle of stochastic control. - SIAM J. Contr., Vol.6, pp. 312-326. | Zbl 0164.19101

[013] Zabczyk J. (1995): Mathematical Control Theory: An Introduction, Systems and Control:Fundations and Applications. -Birkhauser.