Analytic interpolation problems arise quite naturally in a variety of engineering applications. This is due to the fact that analyticity of a (transfer) function relates to the stability of a corresponding dynamical system, while positive realness and contractiveness relate to passivity. On the other hand, the degree of an interpolant relates to the dimension of the pertinent system, and this motivates our interest in constraining the degree of interpolants. The purpose of the present paper is to make an overview of recent developments on the subject as well as to highlight an application of the theory.
@article{bwmeta1.element.bwnjournal-article-amcv11i1p271bwm, author = {Georgiou, Tryphon}, title = {Analytic interpolation and the degree constraint}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {11}, year = {2001}, pages = {271-279}, zbl = {1023.93003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv11i1p271bwm} }
Georgiou, Tryphon. Analytic interpolation and the degree constraint. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) pp. 271-279. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv11i1p271bwm/
[000] Akhiezer N.I. (1965): The Classical Moment Problem, Hafner Publishing, Translation 1965, New York: Oliver and Boyd. | Zbl 0135.33803
[001] Ball J.A. and Helton J.W. (1983): A Beurling-Lax theoremfor the Liegroup U(m, n) which contains most classical interpolation theory. -J. Op. Theory, Vol.9, No.1, pp.107-142. | Zbl 0505.47029
[002] Byrnes C.I., Georgiou T.T. and Lindquist A.(2000a): A generalized entropy criterion for Nevanlinna-Pick interpolationwith degree constraint. -IEEE Trans. Automat. Contr., (to appear). | Zbl 1007.93013
[003] Byrnes C.I., Georgiou T.T. and Lindquist A.(2000b): A new approach to spectral estimation: A tunable high-resolutionspectral estimator. -IEEE Trans. Signal Process., Vol.48, No.11, pp.3189-3206. | Zbl 1040.93063
[004] Byrnes C.I., Georgiou T.T. and Lindquist A.(2000c): Generalized interpolation in cH^∞: Solutions of boundedcomplexity. - (in preparation).
[005] Byrnes C.I., Gusev S.V. and Lindquist A. (1999): A convex optimization approach to the rational covariance extensionproblem. -SIAM J. Contr. Optim., Vol.37, pp.211-229. | Zbl 0947.30027
[006] Byrnes C.I., Landau H.J. and Lindquist A. (1997): On the well-posedness of the rational covariance extensionproblem, In: Current and Future Directions in Applied Mathematics, (M. Alber, B. Hu, J. Rosenthal, Eds.). - Boston: Birkhauser, pp.83-106. | Zbl 0932.93015
[007] Byrnes C.I., Lindquist A., Gusev S.V. and Matveev A.S.(1995): A complete parametrization of all positive rational extensions of acovariancesequence. - IEEE Trans. Automat. Contr., Vol.AC-40, No.11, pp.1841-1857. | Zbl 0847.93008
[008] Delsarte Ph., Genin Y. and Kamp Y. (1981): On therole of the Nevanlinna-Pick problem in circuits and systemtheory. - Circuit Theory Applics., Vol.9, No.1, pp.177-187. | Zbl 0458.94048
[009] Francis B.A. (1987): A Course in H_infty, Control Theory. -New York: Springer-Verlag.
[010] Gantmacher F.R. (1959): The Theory of Matrices. - New York: Chelsea Publishing Company. | Zbl 0085.01001
[011] Georgiou T.T. (1983): Partial Realization of Covariance Sequences. - Ph.D. Thesis, CMST, University of Florida, Gainesville.
[012] Georgiou T.T. (1987a): Realization of power spectra from partialcovariance sequences. -IEEE Trans. Acoust. Speech Signal Process., Vol.ASSP-35, No.4, pp.438-449. | Zbl 0653.93060
[013] Georgiou T.T. (1987b): A topological approach to Nevanlinna-Pickinterpolation. -SIAM J. Math. Anal., Vol.18, No.5, pp.1248-1260. | Zbl 0627.30035
[014] Georgiou T.T. (1999): The interpolation problem with a degreeconstraint. -IEEE Trans. Automat. Contr., Vol.44, No.3, pp.631-635. | Zbl 1056.93561
[015] Georgiou T.T. (2000a): Signal estimation via selectiveharmonicamplification: MUSIC, Redux. - IEEE Trans. Signal Process., Vol.48, No.3, pp.780-790.
[016] Georgiou T.T. (2000b): Subspace analysis of state covariances. - Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Istanbul, June 2000 (CD-ROM).
[017] Georgiou T.T. (2001): Spectral estimation via selectiveharmonic amplification. -IEEE Trans. Automat. Contr., Vol.46, No.1, pp.29-42. | Zbl 1062.93530
[018] Geronimus Ya.L.(1961): Orthogonal Polynomials. - English translation from Russian, New York: Consultants Bureau Inc.
[019] Grenander U. and Szeg G. (1958): Toeplitz Forms and Their Applications. -Berkeley: Univ. California Press.
[020] Helton J.W. (1982): Non-Euclidean analysis and electronics. -Bull. Amer. Math. Soc., Vol.7, No.1, pp.1-64. | Zbl 0493.46047
[021] Kalman R.E. (1982): Realization of covariance sequences, In: Toeplitz Centennial (I. Goh-berg, Ed.). - Boston: Birkhauser, pp.331-342. | Zbl 0484.93031
[022] Stoica P. and Moses R. (1997): Introduction to Spectral Analysis. -New Jersey: Prentice Hall. | Zbl 1051.62522
[023] Sarason D. (1967): Generalized interpolation in H_infty. -Trans. Amer. Math. Soc., Vol.127, No.2, pp.179-203. | Zbl 0145.39303
[024] Tannenbaum A.R. (1982): Modified Nevanlinna-Pick interpolation of linear plants withuncertainty in the gain factor. - Int. J. Contr., Vol.36, No.2, pp.331-336. | Zbl 0493.93043
[025] Walsh J.L. (1956): Interpolation and Approximationby Rational Functions in the Complex Domain. - Providence, R. I.: Amer. Math. Soc.
[026] Youla D.C. and Saito M. (1967): Interpolationwith positive-real functions.- J. Franklin Institute, Vol.284, No.1, pp.77-108. | Zbl 0208.40901
[027] Zames G. (1981): Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses. - IEEE Trans. Automat. Contr., Vol.26, No.2, pp.301-320. | Zbl 0474.93025