Automatic control of mechatronic systems
Schlacher, Kurt ; Kugi, Andreas
International Journal of Applied Mathematics and Computer Science, Tome 11 (2001), p. 131-164 / Harvested from The Polish Digital Mathematics Library

This contribution deals with different concepts of nonlinear control for mechatronic systems. Since most physical systems are nonlinear in nature, it is quite obvious that an improvement in the performance of the closed loop can often be achieved only by means of control techniques that take the essential nonlinearities into consideration. Nevertheless, it can be observed that industry often hesitates to implement these nonlinear controllers, despite all advantages existing from the theoretical point of view. On the basis of three different applications, a PWM-controlled dc-to-dc converter, namely the 'Cuk-converter, the problem of hydraulic gap control in steel rolling, and the design of smart structures with piezolelectric sensor and actuator layers, we will demonstrate how one can overcome these problems by exploiting the physical structure of the mathematical models of the considered plants.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:207497
@article{bwmeta1.element.bwnjournal-article-amcv11i1p131bwm,
     author = {Schlacher, Kurt and Kugi, Andreas},
     title = {Automatic control of mechatronic systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {11},
     year = {2001},
     pages = {131-164},
     zbl = {0976.93062},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv11i1p131bwm}
}
Schlacher, Kurt; Kugi, Andreas. Automatic control of mechatronic systems. International Journal of Applied Mathematics and Computer Science, Tome 11 (2001) pp. 131-164. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv11i1p131bwm/

[000] Fleck N.A., Johnson K.L., Mear M.E. and Zhang L.C. (1992): Cold rolling of foil. - Proc. Instn. Mech. Engrs., Part B: J.Engineering Manufacture, Vol.206, pp.119-131.

[001] Frankel T. (1997): The Geometry of Physics. - Cambridge: Cambridge University Press. | Zbl 0888.58077

[002] Gurtin M. (1981): Topics in Finite Elasticity. - CBMSNSFConf. Series 35, SIAM, Philadelphia. | Zbl 0486.73030

[003] Hensel A. and Spittel T. (1990): Kraft- und Arbeitsbedarfbildsamer Formgebungsverfahren. -Leipzig: Deutscher Verlag fur Grundstoffindustrie.

[004] Isidori A. (1996): Nonlinear Control Systems. - London: Springer. | Zbl 0886.93024

[005] Isidori A. and Astolfi A. (1992): Disturbance attenuation and H_ifty-control via measurement feedback in nonlinear systems. - IEEETrans. Automat. Contr., Vol.37, No.9, pp.1283-1293. | Zbl 0755.93043

[006] Kassakian J.G., Schlecht M.F., Verghese G.C. (1992): Principles of Power Electronics. - New York: Addison Wesley.

[007] Khalil H.K. (1992): Nonlinear Systems. - New York: Macmillan Publishing Company. | Zbl 0969.34001

[008] Knobloch H.W., Isidori A. and Flockerzi D. (1993): Topics in Control Theory. - DMV Seminar Band 22, Basee: Birkhauser. | Zbl 0789.93073

[009] Kugi A. (2000): Non-linear Control Based on Physical Models. -Lecture Notes in Control and Information Sciences 260, London: Springer. | Zbl 0965.93003

[010] Kugi A. and Schlacher K. (1999): Nonlinear H_ifty-controller design for a DC-to-DC power converter. - IEEE Trans. Contr.Syst. Techn., Vol.7, No.2, pp.230-237.

[011] Kugi A., Schlacher K. and Irschik H. (1999a): Infinitedimensional control of nonlinear beam vibrations by piezoelectric actuator andsensor layers. - Nonlin. Dynam., Vol.66, pp.267-269. | Zbl 0948.74037

[012] Kugi A., Schlacher K. and Keintzel G. (1999b): Position Controland Active Eccentricity Compensation in Rolling Mills. - Automatisierungstechnik, Oldenbourg, Vol.47, No.8, pp.342-349.

[013] Lee C.-K. and Moon F.C. (1990): Modal sensorsactuators. - J.Appl. Mech., Trans. ASME, Vol.57, pp.434-441.

[014] Marsden J.E. and Hughes T.J. (1994): Mathematical Foundationsof Elasticity. - New York: Dover Publications.

[015] Merritt H.E. (1967): Hydraulic Control Systems. - New York: Wiley.

[016] Mohan N., Undeland T.M. and Robbins W.P. (1989): Power Electronics: Converters, Applications, and Design. - New York: Wiley.

[017] Nijmeijer H. and van der Schaft A.J. (1991): Nonlinear Dynamical Control Systems. - New York: Springer. | Zbl 0701.93001

[018] Nowacki W. (1975): Dynamic Problems of Thermoelasticity. -Warsaw: Noordhoff Int. Publishing, PWN-Polish Scientific Publishers. | Zbl 0364.73001

[019] Olver P.J. (1993): Applications of Lie Groups to Differential Equations. - New York: Springer. | Zbl 0785.58003

[020] Sastry S. (1999): Nonlinear Systems. - New York: Springer. | Zbl 0924.93001

[021] Schlacher K. (1998): Mathematical strategies common to mechanics and control. - Zeitschrift fur angewandte Mathematik und Mechanik, ZAMM, No.78, pp.723-730. | Zbl 1080.93500

[022] Schlacher K. and Kugi A. (2000): Control of mechanical structures by piezoelectric actuators and sensors, In: Stability and Stabilization of Nonlinear Systems (Aeyels D., Lamnabhi-Lagarrigue F., van der Schaft A., Eds.). -London: Springer, pp.275-292. | Zbl 0934.93051

[023] Schlacher K., Irschik H. and Kugi A. (1996): Control of nonlinear beam vibrations by multiple piezoelectric layers, In: Proc. IUTAM Symp. Interaction between Dynamics and Control in Advanced Mechanical Systems (van Campen D.H., Ed.). - Dordrecht: Kluwer, pp.355-363. | Zbl 0948.74037

[024] Sira Ramirez H. (1989): A geometric approach topulse-width modulated control in nonlinear dynamical systems. - IEEE Trans. Automat. Contr., Vol.34, No.2, pp.184-187. | Zbl 0664.93015

[025] Tzou H.S. (1992): Active piezoelectric shell continua, In: Intelligent Structural Systems (Tzou H.S. and Anderson G.L., Eds.). - Dordrecht: Kluwer, pp.9-74.

[026] van der Schaft A.J. (1993): Nonlinear state space H_∞ control theory, In: Essays on Control: Perspectives inthe Theory and its Applications (Trentelman H.L. and Willems J.C., Eds.). -Boston: Birkhauser, pp.153-190.

[027] van der Schaft A.J. (2000): L_2 -Gain and Passivity Techniques in Nonlinear Control. - London: Springer. | Zbl 0937.93020