Polylogarithms and arithmetic function spaces
Lutz G. Lucht ; Anke Schmalmack
Acta Arithmetica, Tome 92 (2000), p. 361-382 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:207455
@article{bwmeta1.element.bwnjournal-article-aav95z4p361bwm,
     author = {Lutz G. Lucht and Anke Schmalmack},
     title = {Polylogarithms and arithmetic function spaces},
     journal = {Acta Arithmetica},
     volume = {92},
     year = {2000},
     pages = {361-382},
     zbl = {1126.11338},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav95z4p361bwm}
}
Lutz G. Lucht; Anke Schmalmack. Polylogarithms and arithmetic function spaces. Acta Arithmetica, Tome 92 (2000) pp. 361-382. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav95z4p361bwm/

[000] [1] L. Bieberbach, Analytische Fortsetzung, Springer, Berlin, 1955.

[001] [2] A. Jonquière, Note sur le série xn/ns, Bull. Soc. Math. France 17 (1889), 142-152. | Zbl 21.0246.02

[002] [3] D. S. Kubert, The universal ordinary distribution, ibid. 107 (1979), 179-202. | Zbl 0409.12021

[003] [4] L. Lewin, Structural Properties of Polylogarithms, Math. Surveys Monographs 37, Amer. Math. Soc., Providence, 1991. | Zbl 0745.33009

[004] [5] L. G. Lucht, Power series with multiplicative coefficients, Math. Z. 177 (1981), 359-374. | Zbl 0439.10031

[005] [6] L. G. Lucht and C. Methfessel, Recurrent sequences and affine functional equations, J. Number Theory 57 (1996), 105-113. | Zbl 0863.11008

[006] [7] L. G. Lucht and F. Tuttas, Mean values of multiplicative functions and natural boundaries of power series with multiplicative coefficients, J. London Math. Soc. 19 (1979), 25-34. | Zbl 0387.10027

[007] [8] J. Milnor, On polylogarithms, Hurwitz zeta functions, and the Kubert identities, Enseign. Math. 29 (1983), 281-322. | Zbl 0557.10031

[008] [9] A. J. van der Poorten, Some facts that should be better known, especially about rational functions, in: Number Theory and Applications (Banff, 1988), R. A. Mollin (ed.), Kluwer, 1989, 497-528.

[009] [10] A. Schmalmack, Arithmetische Funktionen und holomorph fortsetzbare Potenzreihen, Dissertation, TU Clausthal, 1999.

[010] [11] W. Schwarz, Fourier-Ramanujan-Entwicklungen zahlentheoretischer Funktionen und Anwendungen, Festschrift Wiss. Ges. Univ. Frankfurt, Franz Steiner Verlag, Wiesbaden, 1981, 399-415. | Zbl 0459.10034

[011] [12] W. Schwarz and J. Spilker, Arithmetical Functions, London Math. Soc. Lecture Note Ser. 184, Cambridge Univ. Press, Cambridge, 1994. | Zbl 0807.11001

[012] [13] E. Seneta, Regularly Varying Functions, Lecture Notes in Math. 508, Springer, Berlin, 1976. | Zbl 0324.26002