The Diophantine equation f(x) = g(y)
Bilu, Yuri ; Tichy, Robert
Acta Arithmetica, Tome 92 (2000), p. 261-288 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:207451
@article{bwmeta1.element.bwnjournal-article-aav95z3p261bwm,
     author = {Bilu, Yuri and Tichy, Robert},
     title = {The Diophantine equation f(x) = g(y)},
     journal = {Acta Arithmetica},
     volume = {92},
     year = {2000},
     pages = {261-288},
     zbl = {0958.11049},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav95z3p261bwm}
}
Bilu, Yuri; Tichy, Robert. The Diophantine equation f(x) = g(y). Acta Arithmetica, Tome 92 (2000) pp. 261-288. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav95z3p261bwm/

[000] [1] R. M. Avanzi and U. Zannier, Genus one curves defined by separated variable polynomials, Acta Arith., to appear. | Zbl 1025.11005

[001] [2] A. Baker, Bounds for solutions of superelliptic equations, Proc. Cambridge Philos. Soc. 65 (1969), 439-444. | Zbl 0174.33803

[002] [3] F. Beukers, T. N. Shorey and R. Tijdeman, Irreducibility of polynomials and arithmetic progressions with equal product of terms, in: [21], pp. 11-26. | Zbl 0933.11011

[003] [4] Yu. Bilu, Integral points and Galois covers, Mat. Contemp. 14 (1998), 1-11.

[004] [5] Yu. Bilu, Quadratic factors of f(x)-g(y), Acta Arith. 90 (1999), 341-355. | Zbl 0935.12003

[005] [6] Yu. F. Bilu, B. Brindza, Á. Pintér and R. F. Tichy, On some diophantine problems related to power sums and binomial coefficients, in preparation.

[006] [7] Yu. Bilu and G. Hanrot, Solving superelliptic Diophantine equations by Baker's method, Compositio Math. 112 (1998), 273-312. | Zbl 0915.11065

[007] [8] Yu. F. Bilu, T. Stoll and R. F. Tichy, Diophantine equations for the Meixner polynomials, in preparation.

[008] [9] B. Brindza and Á. Pintér, On the irreducibility of some polynomials in two variables, Acta Arith. 82 (1997), 303-307. | Zbl 0922.11018

[009] [10] Y. Bugeaud, Bounds for the solutions of superelliptic equations, Compositio Math. 107 (1997), 187-219. | Zbl 0886.11016

[010] [11] P. Cassou-Noguès et J.-M. Couveignes, Factorisations explicites de g(y)-h(z), Acta Arith. 87 (1999), 291-317. | Zbl 0923.12004

[011] [12] H. Davenport, D. J. Lewis and A. Schinzel, Equations of the form f(x) = g(y), Quart. J. Math. Oxford Ser. (2) 12 (1961), 304-312. | Zbl 0121.28403

[012] [13] J.-H. Evertse and J. H. Silverman, Uniform bounds for the number of solutions to Yn=f(X), Math. Proc. Cambridge Philos. Soc. 100 (1986), 237-248. | Zbl 0611.10009

[013] [14] W. Feit, On symmetric balanced incomplete block designs with doubly transitive automorphism groups, J. Combin. Theory Ser. A 14 (1973), 221-247. | Zbl 0278.05016

[014] [15] W. Feit, Some consequences of the classification of finite simple groups, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 175-181. | Zbl 0454.20014

[015] [16] M. Fried, The field of definition of function fields and a problem in the reducibility of polynomials in two variables, Illinois J. Math. 17 (1973), 128-146. | Zbl 0266.14013

[016] [17] M. Fried, Arithmetical properties of function fields (II). The generalized Schur problem, Acta Arith. 25 (1973/74), 225-258. | Zbl 0229.12020

[017] [18] M. Fried, On a theorem of Ritt and related Diophantine problems, J. Reine Angew. Math. 264 (1974), 40-55. | Zbl 0278.12101

[018] [19] M. Fried, Exposition on an arithmetic-group theoretic connection via Riemann's existence theorem, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 571-601.

[019] [20] M. Fried, Variables separated polynomials, the genus 0 problem, and moduli spaces, in: [21], pp. 169-228. | Zbl 1053.14509

[020] [21] K. Győry, H. Iwaniec and J. Urbanowicz (eds.), Number Theory in Progress (Proc. Internat. Conf. in Number Theory in Honor of A. Schinzel, Zakopane, 1997), de Gruyter, 1999.

[021] [22] P. Kirschenhofer, A. Pethő and R. F. Tichy, On analytical and Diophantine properties of a family of counting polynomials, Acta Sci. Math. (Szeged) 65 (1999), 47-59. | Zbl 0983.11013

[022] [23] S. Lang, Fundamentals of Diophantine Geometry, Springer, 1983. | Zbl 0528.14013

[023] [24] W. J. LeVeque, On the equation ym=f(x), Acta Arith. 9 (1964), 209-219. | Zbl 0127.27201

[024] [25] R. Lidl, G. L. Mullen and G. Turnwald, Dickson Polynomials, Pitman Monographs Surveys Pure Appl. Math. 65, Longman Sci. Tech., 1993.

[025] [26] J. F. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc. 23 (1922), 51-66. | Zbl 48.0079.01

[026] [27] A. Schinzel, Selected Topics on Polynomials, The Univ. of Michigan Press, Ann Arbor, 1982.

[027] [28] J.-P. Serre, Lectures on the Mordell-Weil Theorem, Aspects Math. E15, Vieweg, Braunschweig, 1989.

[028] [29] C. L. Siegel, The integer solutions of the equation y2=axn+bxn-1+...+k, J. London Math. Soc. 1 (1926), 66-68; also: Gesammelte Abhandlungen, Band 1, 207-208. | Zbl 52.0149.02

[029] [30] C. L. Siegel, Über einige Anwendungen Diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys.-Math. Kl., 1929, Nr. 1; also: Gesammelte Abhandlungen, Band 1, 209-266.

[030] [31] V. G. Sprindžuk, Classical Diophantine Equations in Two Unknowns, Nauka, Moscow, 1982 (in Russian); English transl.: Lecture Notes in Math. 1559, Springer, 1994.

[031] [32] G. Turnwald, On Schur's conjecture, J. Austral. Math. Soc. 58 (1995), 312-357. | Zbl 0834.11052

[032] [33] H. A. Tverberg, A study in irreducibility of polynomials, Ph.D. thesis, Dept. of Math., Univ. of Bergen, 1968.

[033] [34] P. M. Voutier, On the number of S-integral solutions to Ym=f(X), Monatsh. Math. 119 (1995), 125-139. | Zbl 0816.11022