@article{bwmeta1.element.bwnjournal-article-aav95z3p225bwm, author = {\L uczak, Tomasz and Schoen, Tomasz}, title = {On the maximal density of sum-free sets}, journal = {Acta Arithmetica}, volume = {92}, year = {2000}, pages = {225-229}, zbl = {0962.11013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav95z3p225bwm} }
Łuczak, Tomasz; Schoen, Tomasz. On the maximal density of sum-free sets. Acta Arithmetica, Tome 92 (2000) pp. 225-229. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav95z3p225bwm/
[000] [1] J.-M. Deshoulliers, P. Erdős and G. Melfi, On a question about sum-free sequences, Discrete Math. 200 (1999), 49-54. | Zbl 0958.11023
[001] [2] M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer, Berlin, 1997.
[002] [3] P. Erdős, Remarks on number theory, III, Math. Lapok 13 (1962), 28-38 (in Hungarian).
[003] [4] J. Folkman, On the representation of integers as sums of distinct terms from a fixed sequence, Canad. J. Math. 18 (1966), 643-655. | Zbl 0151.03703
[004] [5] N. Hegyvári, On the representation of integers as sums of distinct terms of a fixed set, Acta Arith. 92 (2000), 99-104. | Zbl 0949.11015
[005] [6] A. Sárközy, Finite addition theorems I, J. Number Theory 32 (1989), 114-130. | Zbl 0674.10042
[006] [7] A. Sárközy, Finite addition theorems II, ibid. 48 (1994), 197-218.