Ray class fields of global function fields with many rational places
Roland Auer
Acta Arithmetica, Tome 92 (2000), p. 97-122 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:207447
@article{bwmeta1.element.bwnjournal-article-aav95z2p97bwm,
     author = {Roland Auer},
     title = {Ray class fields of global function fields with many rational places},
     journal = {Acta Arithmetica},
     volume = {92},
     year = {2000},
     pages = {97-122},
     zbl = {0963.11067},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav95z2p97bwm}
}
Roland Auer. Ray class fields of global function fields with many rational places. Acta Arithmetica, Tome 92 (2000) pp. 97-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav95z2p97bwm/

[000] [1] R. Auer, Ray class fields of global function fields with many rational places, Dissertation at the University of Oldenburg, www.bis.uni-oldenburg.de/dissertation/ediss.html, 1999. | Zbl 0930.11082

[001] [2] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, New York, 1967. | Zbl 0153.07403

[002] [3] H. Cohen, F. Diaz y Diaz and M. Olivier, Computing ray class groups, conductors and discriminants, in: Algorithmic Number Theory, H. Cohen (ed.), Lecture Notes in Comput. Sci. 1122, Springer, 1996, 49-57. | Zbl 0898.11046

[003] [4] K M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, M. Schörnig and K. Wildanger, KANT V4, J. Symbolic Comput. 24 (1997), 267-283.

[004] [5] R. Fuhrmann and F. Torres, The genus of curves over finite fields with many rational points, Manuscripta Math. 89 (1996), 103-106. | Zbl 0857.11032

[005] [6] A. Garcia and H. Stichtenoth, Algebraic function fields over finite fields with many rational places, IEEE Trans. Inform. Theory 41 (1995), 1548-1563. | Zbl 0863.11040

[006] [7] G. van der Geer and M. van der Vlugt, How to construct curves over finite fields with many points, in: Arithmetic Geometry (Cortona, 1984), F. Catanese (ed.), Cambridge Univ. Press, 1997, 169-189. | Zbl 0884.11027

[007] [8] G. van der Geer and M. van der Vlugt, Constructing curves over finite fields with many points by solving linear equations, preprint, 1997. | Zbl 1054.11506

[008] [9] G. van der Geer and M. van der Vlugt, Tables of curves with many points, preprint at http://www.wins.uva.nl/geer, 1999. | Zbl 0965.11028

[009] [10] H H. Hasse, Number Theory, Springer, Berlin, 1980.

[010] [11] D. R. Hayes, Explicit class field theory in global function fields, in: Studies in Algebra and Number Theory, Adv. in Math. Suppl. Stud. 6, Academic Press, 1979, 173-217.

[011] [12] H. Kisilevsky, Multiplicative independence in function fields, J. Number Theory 44 (1993), 352-355. | Zbl 0780.11058

[012] [13] K. Lauter, Ray class field constructions of curves over finite fields with many rational points, in: Algorithmic Number Theory, H. Cohen (ed.), Lecture Notes in Comput. Sci. 1122, Springer, 1996, 187-195. | Zbl 0935.11022

[013] [14] K. Lauter, Deligne-Lusztig curves as ray class fields, Manuscripta Math. 98 (1999), 87-96. | Zbl 0919.11076

[014] [15] K. Lauter, A formula for constructing curves over finite fields with many rational points, J. Number Theory 74 (1999), 56-72. | Zbl 1044.11054

[015] [16] J. Neukirch, Algebraische Zahlentheorie, Springer, Berlin, 1991.

[016] [17] H. Niederreiter, Nets, (t,s)-sequences, and algebraic curves over finite fields with many rational points, in: Proc. Internat. Congress of Math. (Berlin, 1998), Documenta Math. Extra Vol. ICM III (1998), 377-386. | Zbl 0899.11038

[017] [18] H. Niederreiter and C. P. Xing, Explicit global function fields over the binary field with many rational places, Acta Arith. 75 (1996), 383-396. | Zbl 0877.11065

[018] [19] H. Niederreiter and C. P. Xing, Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places, ibid. 79 (1997), 59-76. | Zbl 0891.11057

[019] [20] H. Niederreiter and C. P. Xing, Drinfeld modules of rank 1 and algebraic curves with many rational points. II, ibid. 81 (1997), 81-100. | Zbl 0886.11033

[020] [21] H. Niederreiter and C. P. Xing, Algebraic curves over finite fields with many rational points, in: Proc. Number Theory Conf. (Eger, 1996), de Gruyter, 1998, 423-443. | Zbl 0923.11093

[021] [22] H. Niederreiter and C. P. Xing, Global function fields with many rational places over the ternary field, Acta Arith. 83 (1998), 65-86. | Zbl 1102.11312

[022] [23] H. Niederreiter and C. P. Xing, Global function fields with many rational places over the quinary field, Demonstratio Math. 30 (1997), 919-930. | Zbl 0958.11075

[023] [24] H. Niederreiter and C. P. Xing, Global function fields with many rational places over the quinary field. II, Acta Arith. 86 (1998), 277-288. | Zbl 0922.11098

[024] [25] H. Niederreiter and C. P. Xing, Algebraic curves with many rational points over finite fields of characteristic 2, in: Number Theory in Progress (Zakopane, 1997), Vol. 1, de Gruyter, 1999, 359-380. | Zbl 0935.11021

[025] [26] H. Niederreiter and C. P. Xing, A general method of constructing global function fields with many rational places, in: Algorithmic Number Theory (Portland, 1998), Lecture Notes in Comput. Sci. 1423, Springer, 1998, 555-566. | Zbl 0909.11052

[026] [27] H. Niederreiter and C. P. Xing, Algebraic curves over finite fields with many rational points and their applications, in: Number Theory, V. C. Dumir et al. (eds.), Indian National Science Academy, to appear. | Zbl 0986.11040

[027] [28] H. Niederreiter and C. P. Xing, Global function fields with many rational places and their applications, Contemp. Math. 225 (1999), 87-111. | Zbl 0960.11033

[028] [29] J. P. Pedersen, A function field related to the Ree group, in: Coding Theory and Algebraic Geometry (Luminy, 1991), H. Stichtenoth and M. A. Tsfasman (eds.), Lecture Notes in Math. 1518, Springer, Berlin, 1992, 122-131.

[029] [30] M. Perret, Tours ramifiées infinies de corps de classes, J. Number Theory 38 (1991), 300-322. | Zbl 0741.11044

[030] [31] M. Rosen, S-units and S-class group in algebraic function fields, J. Algebra 26 (1973), 98-108. | Zbl 0265.12003

[031] [32] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365-378. | Zbl 0632.12017

[032] [33] R. Schoof, Algebraic Curves and Coding Theory, UTM 336 (1990), Univ. of Trento.

[033] [34] J.-P. Serre, Sur le nombre des points rationnelles d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I 296 (1983), 397-402. | Zbl 0538.14015

[034] [35] J.-P. Serre, Nombres de points des courbes algébrique sur q, Sém. Théor. Nombres Bordeaux 22 (1982/83).

[035] [36] J.-P. Serre, Résumé des cours de 1983-1984, Annuaire du Collège de France, 1984, 79-83.

[036] [37] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.

[037] [38] C. P. Xing and H. Niederreiter, Drinfel'd modules of rank 1 and algebraic curves with many rational points, Monatsh. Math. 127 (1999), 219-241. | Zbl 0982.11034