A generalization of Sturmian sequences: Combinatorial structure and transcendence
Risley, Rebecca ; Zamboni, Luca
Acta Arithmetica, Tome 92 (2000), p. 167-184 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:207445
@article{bwmeta1.element.bwnjournal-article-aav95z2p167bwm,
     author = {Risley, Rebecca and Zamboni, Luca},
     title = {A generalization of Sturmian sequences: Combinatorial structure and transcendence},
     journal = {Acta Arithmetica},
     volume = {92},
     year = {2000},
     pages = {167-184},
     zbl = {0953.11007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav95z2p167bwm}
}
Risley, Rebecca; Zamboni, Luca. A generalization of Sturmian sequences: Combinatorial structure and transcendence. Acta Arithmetica, Tome 92 (2000) pp. 167-184. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav95z2p167bwm/

[000] [1] J.-P. Allouche and L. Q. Zamboni, Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms, J. Number Theory 69 (1998), 119-124. | Zbl 0918.11016

[001] [2] P. Arnoux and S. Ito, Pisot substitutions and Rauzy fractals, preprint, 1999. | Zbl 1007.37001

[002] [3] P. Arnoux et G. Rauzy, Représentation géométrique de suites de complexité 2n+1, Bull. Soc. Math. France 119 (1991), 199-215. | Zbl 0789.28011

[003] [4] J. Berstel, Mots de Fibonacci, Séminaire d'Informatique Théorique, LITP, Universités Paris 6-7 (1980-1981), 57-78.

[004] [5] J. Berstel et P. Séébold, Morphismes de Sturm, Bull. Belg. Math. Soc. 1 (1994), 175-189.

[005] [6] V. Berthé, Fréquences des facteurs des suites sturmiennes, Theoret. Comput. Sci. 165 (1996), 295-309.

[006] [7] M. G. Castelli, F. Mignosi and A. Restivo, Fine and Wilf's theorem for three periods and a generalization of sturmian words, ibid. 218 (1999), 83-94. | Zbl 0916.68114

[007] [8] N. Chekhova, Les suites d'Arnoux-Rauzy : algorithme d'approximation et propriétés ergodiques, preprint, 1998.

[008] [9] N. Chekhova, P. Hubert et A. Messaoudi, Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci, J. Théor. Nombres Bordeaux, to appear.

[009] [10] E. M. Coven and G. A. Hedlund, Sequences with minimal block growth, Math. Systems Theory 7 (1973), 138-153. | Zbl 0256.54028

[010] [11] A. de Luca and F. Mignosi, Some combinatorial properties of Sturmian words, Theoret. Comput. Sci. 136 (1994), 361-385. | Zbl 0874.68245

[011] [12] F. Durand, A characterization of substitutive sequences using return words, Discrete Math. 179 (1998), 89-101. | Zbl 0895.68087

[012] [13] F. Durand, Linearly recurrent subshifts, Ergod. Theory Dynam. Systems, to appear.

[013] [14] F. Durand and B. Host, private communication.

[014] [15] F. Durand, B. Host and C. Skau, Substitution dynamical systems, Bratteli diagrams and dimension groups, Ergod. Theory Dynam. Systems 19 (1999), 953-993. | Zbl 1044.46543

[015] [16] S. Ferenczi, Les transformations de Chacon : combinatoire, structure géométrique, lien avec les systèmes de complexité 2n+1, Bull. Soc. Math. France 123 (1995), 271-292.

[016] [17] S. Ferenczi and C. Mauduit, Transcendence of numbers with a low complexity expansion, J. Number Theory 67 (1997), 146-161. | Zbl 0895.11029

[017] [18] C. Holton and L. Q. Zamboni, Descendants of primitive substitutions, Theory Comput. Syst. 32 (1998), 133-157. | Zbl 0916.68086

[018] [19] C. Holton and L. Q. Zamboni, Directed graphs and substitutions, in: From Crystals to Chaos, P. Hubert, R. Lima and S. Vaienti (eds.), World Sci., 1999, to appear.

[019] [20] J. H. Loxton and A. van der Poorten, Arithmetic properties of automata: regular sequences, J. Reine Angew. Math. 392 (1988), 57-69.

[020] [21] K. Mahler, Lectures on Diophantine Approximations, Part I: g-adic Numbers and Roth’s Theorem, Univ. of Notre Dame, 1961. | Zbl 0158.29903

[021] [22] K. Mahler, Arithmetische Eigenschaften einer Klasse von Dezimalbrüchen, Proc. Konink. Nederl. Akad. Wetensch. Ser. A 40 (1937), 421-428. | Zbl 0017.05602

[022] [23] F. Mignosi, Infinite words with linear subword complexity, Theoret. Comput. Sci. 65 (1989), 221-242. | Zbl 0682.68083

[023] [24] F. Mignosi, On the number of factors of Sturmian words, ibid. 82 (1991), 71-84. | Zbl 0728.68093

[024] [25] F. Mignosi and G. Pirillo, Repetitions in the Fibonacci infinite word, RAIRO Inform. Théor. Appl. 26 (1992), 199-204. | Zbl 0761.68078

[025] [26] M. Morse and G. A. Hedlund, Symbolic dynamics, Amer. J. Math. 60 (1938), 815-866. | Zbl 0019.33502

[026] [27] M. Morse and G. A. Hedlund, Symbolic dynamics II: Sturmian sequences, ibid. 62 (1940), 1-42. | Zbl 0022.34003

[027] [28] M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Math. 1294, Springer, 1987.

[028] [29] G. Rauzy, Mots infinis en arithmétique, in: Automata on Infinite Words, M. Nivat and D. Perrin (eds.), Lecture Notes in Comput. Sci. 192, Springer, Berlin, 1985, 165-171. | Zbl 0613.10044

[029] [30] G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), 147-178. | Zbl 0522.10032

[030] [31] G. Rote, Sequences with subword complexity 2n, J. Number Theory 46 (1994), 196-213. | Zbl 0804.11023

[031] [32] J.-I. Tamura, A class of transcendental numbers having explicit g-adic and Jacobi-Perron expansions of arbitrary dimension, Acta Arith. 71 (1995), 301-329. | Zbl 0828.11036

[032] [33] N. Wozny and L. Q. Zamboni, Frequencies of factors in Arnoux-Rauzy sequences, Acta Arith., to appear. | Zbl 0973.11030

[033] [34] L. Q. Zamboni, Une généralisation du théorème de Lagrange sur le développement en fraction continue, C. R. Acad. Sci. Paris Sér. I, 327 (1998), 527-530.