1. Introduction. Let p be a prime number and the ring of p-adic integers. Let k be a finite extension of the rational number field ℚ, a -extension of k, the nth layer of , and the p-Sylow subgroup of the ideal class group of . Iwasawa proved the following well-known theorem about the order of : Theorem A (Iwasawa). Let be a -extension and the p-Sylow subgroup of the ideal class group of , where is the th layer of . Then there exist integers , , , and n₀ ≥ 0 such that for all n ≥ n₀, where is the order of . These integers , and are called Iwasawa invariants of for p. If is the cyclotomic -extension of k, then we denote λ (resp. μ and ν) by (resp. and ). Ferrero and Washington proved for any abelian extension field k of ℚ. On the other hand, Greenberg [4] conjectured that if k is a totally real, then . We call this conjecture Greenberg’s conjecture. In this paper, we determine all absolutely abelian p-extensions k with for an odd prime p, by using the results of G. Cornell and M. Rosen [1].
@article{bwmeta1.element.bwnjournal-article-aav94i4p365bwm, author = {Gen Yamamoto}, title = {On the vanishing of Iwasawa invariants of absolutely abelian p-extensions}, journal = {Acta Arithmetica}, volume = {92}, year = {2000}, pages = {365-371}, zbl = {0964.11048}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav94i4p365bwm} }
Gen Yamamoto. On the vanishing of Iwasawa invariants of absolutely abelian p-extensions. Acta Arithmetica, Tome 92 (2000) pp. 365-371. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav94i4p365bwm/
[00000] [1] G. Cornell and M. Rosen, The class group of an absolutely abelian l-extension, Illinois J. Math. 32 (1988), 453-461. | Zbl 0654.12006
[00001] [2] T. Fukuda, On the vanishing of Iwasawa invariants of certain cyclic extensions of ℚ with prime degree, Proc. Japan Acad. 73 (1997), 108-110. | Zbl 0899.11052
[00002] [3] T. Fukuda, K. Komatsu, M. Ozaki and H. Taya, On Iwasawa -invariants of relative real cyclic extension of degree p, Tokyo J. Math. 20 (1997), 475-480. | Zbl 0919.11068
[00003] [4] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284. | Zbl 0334.12013
[00004] [5] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258. | Zbl 0074.03002
[00005] [6] G. Yamamoto, On the vanishing of Iwasawa invariants of certain (p,p)-extensions of ℚ, Proc. Japan Acad. 73A (1997), 45-47. | Zbl 0879.11061