Connection between Schinzel’s conjecture and divisibility of the class number hp+
Jakubec, Stanislav
Acta Arithmetica, Tome 92 (2000), p. 161-171 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:207429
@article{bwmeta1.element.bwnjournal-article-aav94i2p161bwm,
     author = {Jakubec, Stanislav},
     title = {Connection between Schinzel's conjecture and divisibility of the class number $h\_{p}^{+}$
            },
     journal = {Acta Arithmetica},
     volume = {92},
     year = {2000},
     pages = {161-171},
     zbl = {0954.11034},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav94i2p161bwm}
}
Jakubec, Stanislav. Connection between Schinzel’s conjecture and divisibility of the class number $h_{p}^{+}$
            . Acta Arithmetica, Tome 92 (2000) pp. 161-171. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav94i2p161bwm/

[000] [1] E. R. Hansen, A Table of Series and Products, Prentice-Hall, 1973.

[001] [2] S. Jakubec, Divisibility of the class number h+ of the real cyclotomic fields of prime degree l, Math. Comp. 67 (1998), 369-398. | Zbl 0914.11057

[002] [3] S. Jakubec, On divisibility of h+ by the prime 3, Rocky Mountain J. Math. 24 (1994), 1467-1473. | Zbl 0821.11053

[003] [4] T. Lepistö, On the growth of the first factor of the class number of the prime cyclotomic field, Ann. Acad. Sci. Fenn. Ser. A I Math. 577 (1974). | Zbl 0294.12005

[004] [5] T. Metsänkylä, Class numbers and μ-invariants of cyclotomic fields, Proc. Amer. Math. Soc. 43 (1974), 299-300. | Zbl 0257.12004