@article{bwmeta1.element.bwnjournal-article-aav94i2p161bwm, author = {Jakubec, Stanislav}, title = {Connection between Schinzel's conjecture and divisibility of the class number $h\_{p}^{+}$ }, journal = {Acta Arithmetica}, volume = {92}, year = {2000}, pages = {161-171}, zbl = {0954.11034}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav94i2p161bwm} }
Jakubec, Stanislav. Connection between Schinzel’s conjecture and divisibility of the class number $h_{p}^{+}$ . Acta Arithmetica, Tome 92 (2000) pp. 161-171. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav94i2p161bwm/
[000] [1] E. R. Hansen, A Table of Series and Products, Prentice-Hall, 1973.
[001] [2] S. Jakubec, Divisibility of the class number of the real cyclotomic fields of prime degree l, Math. Comp. 67 (1998), 369-398. | Zbl 0914.11057
[002] [3] S. Jakubec, On divisibility of by the prime 3, Rocky Mountain J. Math. 24 (1994), 1467-1473. | Zbl 0821.11053
[003] [4] T. Lepistö, On the growth of the first factor of the class number of the prime cyclotomic field, Ann. Acad. Sci. Fenn. Ser. A I Math. 577 (1974). | Zbl 0294.12005
[004] [5] T. Metsänkylä, Class numbers and μ-invariants of cyclotomic fields, Proc. Amer. Math. Soc. 43 (1974), 299-300. | Zbl 0257.12004