θ-congruent numbers and elliptic curves
Kan, Makiko
Acta Arithmetica, Tome 92 (2000), p. 153-160 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:207428
@article{bwmeta1.element.bwnjournal-article-aav94i2p153bwm,
     author = {Kan, Makiko},
     title = {$\theta$-congruent numbers and elliptic curves},
     journal = {Acta Arithmetica},
     volume = {92},
     year = {2000},
     pages = {153-160},
     zbl = {0970.11020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav94i2p153bwm}
}
Kan, Makiko. θ-congruent numbers and elliptic curves. Acta Arithmetica, Tome 92 (2000) pp. 153-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav94i2p153bwm/

[000] [1] B. J. Birch, Elliptic curves and modular functions, in: Symposia Math. IV (Roma, 1968/69), Academic Press, 1970, 27-32. | Zbl 1214.11081

[001] [2] B. J. Birch, Heegner points of elliptic curves, in: Symposia Math. XV (Roma, 1973), Academic Press, 1975, 441-445.

[002] [3] J. S. Chahal, On an identity of Desboves, Proc. Japan Acad. Ser. A 60 (1984), 105-108. | Zbl 0562.14010

[003] [4] G. Frey, Some aspects of the theory of elliptic curves over number fields, Exposition. Math. 4 (1986), 35-66. | Zbl 0596.14022

[004] [5] R. Fricke, Lehrbuch der Algebra III, Braunschweig, 1928. | Zbl 54.0187.20

[005] [6] M. Fujiwara, θ-congruent numbers, in: Number Theory, K. Győry, A. Pethő, and V. Sós (eds.), de Gruyter, 1997, 235-241.

[006] [7] B. Gross and D. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986), 225-320. | Zbl 0608.14019

[007] [8] P. Monsky, Mock Heegner points and congruent numbers, Math. Z. 204 (1990), 45-68. | Zbl 0705.14023

[008] [9] P. Serf, Congruent numbers and elliptic curves, in: Computational Number Theory, A. Pethő et al. (eds.), de Gruyter, 1991, 227-238. | Zbl 0736.11017

[009] [10] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986. | Zbl 0585.14026

[010] [11] A. Wiman, Über den Rang von Kurven y2=x(x+a)(x+b), Acta Math. 76 (1944), 225-251. | Zbl 0061.07109