A parametric family of elliptic curves
Dujella, Andrej
Acta Arithmetica, Tome 92 (2000), p. 87-101 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:207426
@article{bwmeta1.element.bwnjournal-article-aav94i1p87bwm,
     author = {Dujella, Andrej},
     title = {A parametric family of elliptic curves},
     journal = {Acta Arithmetica},
     volume = {92},
     year = {2000},
     pages = {87-101},
     zbl = {0972.11048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav94i1p87bwm}
}
Dujella, Andrej. A parametric family of elliptic curves. Acta Arithmetica, Tome 92 (2000) pp. 87-101. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav94i1p87bwm/

[000] [1] A. Baker and H. Davenport, The equations 3x2-2=y2 and 8x2-7=z2, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137. | Zbl 0177.06802

[001] [2] A. Bremner, R. J. Stroeker and N. Tzanakis, On sums of consecutive squares, J. Number Theory 62 (1997), 39-70. | Zbl 0876.11024

[002] [3] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, 1997. | Zbl 0872.14041

[003] [4] L. E. Dickson, History of the Theory of Numbers, Vol. 2, Chelsea, New York, 1966, pp. 513-520.

[004] [5] A. Dujella, The problem of the extension of a parametric family of Diophantine triples, Publ. Math. Debrecen 51 (1997), 311-322. | Zbl 0903.11010

[005] [6] A. Dujella, A proof of the Hoggatt-Bergum conjecture, Proc. Amer. Math. Soc. 127 (1999), 1999-2005. | Zbl 0937.11011

[006] [7] A. Dujella, Diophantine triples and construction of high-rank elliptic curves over ℚ with three non-trivial 2-torsion points, Rocky Mountain J. Math., to appear. | Zbl 0989.11032

[007] [8] A. Dujella and A. Pethő, Generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) (49) (1998), 291-306. | Zbl 0911.11018

[008] [9] A. Dujella and A. Pethő, Integer points on a family of elliptic curves, Publ. Math. Debrecen, to appear.

[009] [10] S. Fermigier, Étude expérimentale du rang de familles de courbes elliptiques sur ℚ, Experiment. Math. 5 (1996), 119-130.

[010] [11] J. Gebel, A. Pethő and H. G. Zimmer, Computing integral points on elliptic curve, Acta Arith. 68 (1994), 171-192. | Zbl 0816.11019

[011] [12] A. Grelak and A. Grytczuk, On the diophantine equation ax2-by2=c, Publ. Math. Debrecen 44 (1994), 191-199. | Zbl 0817.11019

[012] [13] C. M. Grinstead, On a method of solving a class of Diophantine equations, Math. Comp. 32 (1978), 936-940. | Zbl 0389.10015

[013] [14] D. Husemöller, Elliptic Curves, Springer, New York, 1987.

[014] [15] A. Knapp, Elliptic Curves, Princeton Univ. Press, 1992.

[015] [16] T. Nagell, Introduction to Number Theory, Almqvist, Stockholm; Wiley, New York, 1951. | Zbl 0042.26702

[016] [17] T. Nagell, Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns, Nova Acta Soc. Sci. Upsal. 16 (1954), 1-38. | Zbl 0057.28304

[017] [18] I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, Wiley, New York, 1991. | Zbl 0742.11001

[018] [19] K. Ono, Euler's concordant forms, Acta Arith. 78 (1996), 101-123.

[019] [20] J. H. Rickert, Simultaneous rational approximations and related diophantine equations, Math. Proc. Cambridge Philos. Soc. 113 (1993), 461-472. | Zbl 0786.11040

[020] [21] J. H. Silverman, Rational points on elliptic surfaces, preprint. | Zbl 0752.14034

[021] [22] SIMATH manual, Universität des Saarlandes, Saarbrücken, 1997.