The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, II
Wladimir de Azevedo Pribitkin
Acta Arithmetica, Tome 92 (2000), p. 343-358 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:207418
@article{bwmeta1.element.bwnjournal-article-aav93i4p343bwm,
     author = {Wladimir de Azevedo Pribitkin},
     title = {The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, II},
     journal = {Acta Arithmetica},
     volume = {92},
     year = {2000},
     pages = {343-358},
     zbl = {1161.11336},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav93i4p343bwm}
}
Wladimir de Azevedo Pribitkin. The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, II. Acta Arithmetica, Tome 92 (2000) pp. 343-358. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav93i4p343bwm/

[000] [1] G. Andrews, The Theory of Partitions, Cambridge Univ. Press, Cambridge, 1998. | Zbl 0996.11002

[001] [2] D. Goldfeld and P. Sarnak, Sums of Kloosterman sums, Invent. Math. 71 (1983), 243-250. | Zbl 0507.10029

[002] [3] M. Knopp, On the Fourier coefficients of small positive powers of θ(τ), ibid. 85 (1986), 165-183.

[003] [4] M. Knopp, On the Fourier coefficients of cusp forms having small positive weight, in: Proc. Sympos. Pure Math. 49, Part 2, Amer. Math. Soc., Providence, RI, 1989, 111-127.

[004] [5] D. Niebur, Automorphic integrals of arbitrary positive dimension and Poincaré series, Doctoral Dissertation, University of Wisconsin, Madison, 1968.

[005] [6] D. Niebur, Construction of automorphic forms and integrals, Trans. Amer. Math. Soc. 191 (1974), 373-385. | Zbl 0306.30023

[006] [7] P. Pasles and W. Pribitkin, A generalization of the Lipschitz summation formula and some applications, to appear.

[007] [8] W. Pribitkin, The Fourier coefficients of modular forms and modular integrals having small positive weight, Doctoral Dissertation, Temple University, Philadelphia, 1995. | Zbl 1161.11336

[008] [9] W. Pribitkin, The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, I, Acta Arith. 91 (1999), 291-309. | Zbl 0944.11014

[009] [10] H. Rademacher and H. S. Zuckerman, On the Fourier coefficients of certain modular forms of positive dimension, Ann. of Math. 39 (1938), 433-462. | Zbl 0019.02201

[010] [11] W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene I, Math. Ann. 167 (1966), 292-337. | Zbl 0152.07705

[011] [12] A. Selberg, On the estimation of Fourier coefficients of modular forms, in: Theory of Numbers, Proc. Sympos. Pure Math. 8, Amer. Math. Soc., Providence, RI, 1965, 1-15.