Invariants des courbes de Frey-Hellegouarch et grands groupes de Tate-Shafarevich
Abderrahmane Nitaj
Acta Arithmetica, Tome 92 (2000), p. 303-327 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:207416
@article{bwmeta1.element.bwnjournal-article-aav93i4p303bwm,
     author = {Abderrahmane Nitaj},
     title = {Invariants des courbes de Frey-Hellegouarch et grands groupes de Tate-Shafarevich},
     journal = {Acta Arithmetica},
     volume = {92},
     year = {2000},
     pages = {303-327},
     zbl = {0969.11023},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav93i4p303bwm}
}
Abderrahmane Nitaj. Invariants des courbes de Frey-Hellegouarch et grands groupes de Tate-Shafarevich. Acta Arithmetica, Tome 92 (2000) pp. 303-327. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav93i4p303bwm/

[000] [1] A. O. L. Atkin and J. Lehner, Hecke operators on Γ₀(m), Math. Ann. 185 (1970), 134-160.

[001] [2] C. Batut, D. Bernardi, H. Cohen and M. Olivier, PARI-GP, a computer system for number theory, Version 2.0, ftp://megrez.math.u-bordeaux.fr/pub/pari/.

[002] [3] R. Bölling, Die Ordnung der Schafarewitsch-Tate-Gruppe kann beliebig groß werden, Math. Nachr. 67 (1975), 157-179. | Zbl 0314.14008

[003] [4] J. W. S. Cassels, Arithmetic on curves of genus 1. VI. The Tate-Šafarevič group can be arbitrarily large, J. Reine Angew. Math. 214/215 (1964), 65-70. | Zbl 0236.14012

[004] [5] H. Cohen, A Course in Computational Algebraic Number Theory, Grad. Texts in Math. 138, Springer, Berlin, 1993.

[005] [6] I. Connell, APECS, Version 4.36 1998, ftp://math.mcgill.ca/pub/apecs/.

[006] [7] J. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, Cambridge, 1992. | Zbl 0758.14042

[007] [8] P. Deligne, Les constantes des équations fonctionnelles des fonctions L, in: Antwerp II: Modular Functions of One Variable, Lecture Notes in Math. 349, Springer, 1973, 501-597.

[008] [9] F. Diamond, On deformation rings and Hecke rings, Ann. of Math. 144 (1996), 137-166. | Zbl 0867.11032

[009] [10] F. Diamond and K. Kramer, Modularity of a family of elliptic curves, Math. Res. Lett. 2 (1995), 299-304. | Zbl 0867.11041

[010] [11] G. Frey, Some aspects of the theory of elliptic curves over number fields, Exposition. Math. 4 (1986), 35-66. | Zbl 0596.14022

[011] [12] J. Gebel and H. G. Zimmer, Computing the Mordell-Weil group of an elliptic curve over ℚ, in: Elliptic Curves and Related Topics, CRM Proc. Lecture Notes 4, Amer. Math. Soc., 1994, 61-83. | Zbl 0809.14024

[012] [13] D. Goldfeld and D. Lieman, Effective bounds on the size of the Tate-Shafarevich group, Math. Res. Lett. 3 (1996), 309-318. | Zbl 0869.11053

[013] [14] D. Goldfeld and L. Szpiro, Bounds for the order of the Tate-Shafarevich group, Compositio Math. 97 (1995), 71-87. | Zbl 0860.11032

[014] [15] B. H. Gross, Kolyvagin's work on modular elliptic curves, in: L-functions and Arithmetic (Durham, 1989), Cambridge Univ. Press, 1991, 235-256. | Zbl 0743.14021

[015] [16] D. Husemöller, Elliptic Curves, Grad. Texts in Math. 111, Springer, Berlin, 1986.

[016] [17] W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip, Invent. Math. 64 (1981), 175-198. | Zbl 0468.10015

[017] [18] V. A. Kolyvagin, Finiteness of E(ℚ) and Ш(E/ℚ) for a subclass of Weil curves, Math. USSR-Izv. 32 (1989), 523-541.

[018] [19] K. Kramer, A family of semistable elliptic curves with large Tate-Shafarevitch groups, Proc. Amer. Math. Soc. 89 (1983), 379-386. | Zbl 0567.14018

[019] [20] D. S. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. 33 (1976), 193-237. | Zbl 0331.14010

[020] [21] S. Lang, Conjectured diophantine estimates on elliptic curves, in: Progr. Math. 35, Birkhäuser, 1983, 155-172. | Zbl 0529.14017

[021] [22] A. K. Lenstra, H. W. Lenstra and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515-534. | Zbl 0488.12001

[022] [23] L. Mai and M. R. Murty, A note on quadratic twists of an elliptic curve, in: Elliptic Curves and Related Topics, CRM Proc. Lecture Notes 4, Amer. Math. Soc., 1994, 121-124. | Zbl 0806.14025

[023] [24] Y. Manin, Cyclotomic fields and modular curves, Russian Math. Surveys 26 (1971), 7-78.

[024] [25] A. Nitaj, Détermination de courbes elliptiques pour la conjecture de Szpiro, Acta Arith. 85 (1998), 351-376. | Zbl 0914.11028

[025] [26] A. Nitaj, Tables of good abc-examples, preprint, Saarbrücken, 1997.

[026] [27] C. S. Rajan, On the size of the Shafarevich-Tate group of elliptic curves over function fields, Compositio Math. 105 (1997), 29-41. | Zbl 1044.11583

[027] [28] D. E. Rohrlich, Galois theory, elliptic curves, and root numbers, ibid. 100 (1996), 311-349. | Zbl 0860.11033

[028] [29] K. Rubin, Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication, Invent. Math. 89 (1987), 527-560. | Zbl 0628.14018

[029] [30] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer, Berlin, 1986.

[030] [31] Simath Group, SIMATH, a computer algebra system, Version 4.2, Saarbrücken, 1998, ftp://ftp.math.uni-sb.de:/pub/simath.

[031] [32] B. M. M. de Weger, A+B=C and big Ш's, Quart. J. Math. Oxford Ser. (2) 49 (1998), 105-128.