@article{bwmeta1.element.bwnjournal-article-aav93i3p293bwm, author = {Alessandro Zaccagnini}, title = {A conditional density theorem for the zeros of the Riemann zeta-function}, journal = {Acta Arithmetica}, volume = {92}, year = {2000}, pages = {293-301}, zbl = {0949.11040}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav93i3p293bwm} }
Alessandro Zaccagnini. A conditional density theorem for the zeros of the Riemann zeta-function. Acta Arithmetica, Tome 92 (2000) pp. 293-301. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav93i3p293bwm/
[000] [1] D. Bazzanella and A. Perelli, The exceptional set for the number of primes in short intervals, to appear. | Zbl 0972.11087
[001] [2] E. Bombieri, Le grand crible dans la théorie analytique des nombres, Astérisque 18 (1974).
[002] [3] D. A. Goldston and H. L. Montgomery, Pair correlation of zeros and primes in short intervals, in: Analytic Number Theory and Diophantine Problems, A. Adolphson et al. (eds.), Birkhäuser, Boston, 1987, 183-203. | Zbl 0629.10032
[003] [4] M. N. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972), 164-170. | Zbl 0241.10026
[004] [5] G. Kolesnik and E. G. Straus, On the sum of powers of complex numbers, in: Studies in Pure Mathematics, To the Memory of P. Turán, P. Erdős (ed.), Birkhäuser, Basel, 1983, 427-442. | Zbl 0519.10031
[005] [6] B. Saffari and R. C. Vaughan, On the fractional parts of x/n and related sequences. II, Ann. Inst. Fourier (Grenoble) 27 (1977), no. 2, 1-30. | Zbl 0379.10023
[006] [7] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Oxford Univ. Press, 1986. | Zbl 0601.10026
[007] [8] P. Turán, On a New Method of Analysis and its Applications, Wiley, New York, 1984.
[008] [9] A. Zaccagnini, Primes in almost all short intervals, Acta Arith. 84 (1998), 225-244. | Zbl 0895.11035