Reciprocity laws for generalized higher dimensional Dedekind sums
Robin Chapman
Acta Arithmetica, Tome 92 (2000), p. 189-199 / Harvested from The Polish Digital Mathematics Library

We define a class of generalized Dedekind sums and prove a family of reciprocity laws for them. These sums and laws generalize those of Zagier [6]. The method is based on that of Solomon [5].

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:207409
@article{bwmeta1.element.bwnjournal-article-aav93i2p189bwm,
     author = {Robin Chapman},
     title = {Reciprocity laws for generalized higher dimensional Dedekind sums},
     journal = {Acta Arithmetica},
     volume = {92},
     year = {2000},
     pages = {189-199},
     zbl = {0944.11013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav93i2p189bwm}
}
Robin Chapman. Reciprocity laws for generalized higher dimensional Dedekind sums. Acta Arithmetica, Tome 92 (2000) pp. 189-199. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav93i2p189bwm/

[000] [1] R. R. Hall, J. C. Wilson and D. Zagier, Reciprocity formulae for general Dedekind-Rademacher sums, Acta Arith. 73 (1995), 389-396. | Zbl 0847.11020

[001] [2] H S. Hu, Shintani cocycles and generalized Dedekind sums, Ph.D. thesis, Univ. of Pennsylvania, 1997.

[002] [3] S. Hu and D. Solomon, Properties of higher-dimensional Shintani generating functions and cocycles on PGL₃(ℚ), Proc. London Math. Soc., to appear.

[003] [4] H. Rademacher, Generalization of the reciprocity formula for Dedekind sums, Duke Math. J. 21 (1954), 391-397.

[004] [5] D. Solomon, Algebraic properties of Shintani's generating functions: Dedekind sums and cocycles on PGL₂(ℚ), Compositio Math. 112 (1998), 333-362. | Zbl 0920.11026

[005] [6] D. Zagier, Higher dimensional Dedekind sums, Math. Ann. 202 (1973), 149-172. | Zbl 0237.10025