We define a class of generalized Dedekind sums and prove a family of reciprocity laws for them. These sums and laws generalize those of Zagier [6]. The method is based on that of Solomon [5].
@article{bwmeta1.element.bwnjournal-article-aav93i2p189bwm, author = {Robin Chapman}, title = {Reciprocity laws for generalized higher dimensional Dedekind sums}, journal = {Acta Arithmetica}, volume = {92}, year = {2000}, pages = {189-199}, zbl = {0944.11013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav93i2p189bwm} }
Robin Chapman. Reciprocity laws for generalized higher dimensional Dedekind sums. Acta Arithmetica, Tome 92 (2000) pp. 189-199. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav93i2p189bwm/
[000] [1] R. R. Hall, J. C. Wilson and D. Zagier, Reciprocity formulae for general Dedekind-Rademacher sums, Acta Arith. 73 (1995), 389-396. | Zbl 0847.11020
[001] [2] H S. Hu, Shintani cocycles and generalized Dedekind sums, Ph.D. thesis, Univ. of Pennsylvania, 1997.
[002] [3] S. Hu and D. Solomon, Properties of higher-dimensional Shintani generating functions and cocycles on PGL₃(ℚ), Proc. London Math. Soc., to appear.
[003] [4] H. Rademacher, Generalization of the reciprocity formula for Dedekind sums, Duke Math. J. 21 (1954), 391-397.
[004] [5] D. Solomon, Algebraic properties of Shintani's generating functions: Dedekind sums and cocycles on PGL₂(ℚ), Compositio Math. 112 (1998), 333-362. | Zbl 0920.11026
[005] [6] D. Zagier, Higher dimensional Dedekind sums, Math. Ann. 202 (1973), 149-172. | Zbl 0237.10025