On sets of natural numbers without solution to a noninvariant linear equation
Tomasz Schoen
Acta Arithmetica, Tome 92 (2000), p. 149-155 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:207406
@article{bwmeta1.element.bwnjournal-article-aav93i2p149bwm,
     author = {Tomasz Schoen},
     title = {On sets of natural numbers without solution to a noninvariant linear equation},
     journal = {Acta Arithmetica},
     volume = {92},
     year = {2000},
     pages = {149-155},
     zbl = {0948.11013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav93i2p149bwm}
}
Tomasz Schoen. On sets of natural numbers without solution to a noninvariant linear equation. Acta Arithmetica, Tome 92 (2000) pp. 149-155. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav93i2p149bwm/

[000] [1] N. Alon, Independent sets in regular graphs and sum-free sets of finite groups, Israel J. Math. 73 (1991), 247-256. | Zbl 0762.05050

[001] [2] J.-M. Deshoulliers, G. Freimen, V. Sós and M. Temkin, On the structure of sum-free sets, 2, Astérisque 258 (1999), 149-161.

[002] [3] P. Erdős, V. Sós and A. Sárközy, On sum sets of Sidon sets, J. Number Theory 47 (1993), 329-347. | Zbl 0811.11014

[003] [4] V. Lev, Optimal representation by sumsets and subset sums, ibid. 62 (1997), 127-143. | Zbl 0868.11017

[004] [5] T. Łuczak and T. Schoen, On the infinite sum-free sets of natural numbers, ibid. 66 (1997), 211-224. | Zbl 0884.11018

[005] [6] K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104-109. | Zbl 0050.04002

[006] [7] I. Z. Ruzsa, On infinite Sidon sequences, J. Number Theory 68 (1998), 63-71. | Zbl 0927.11005

[007] [8] I. Z. Ruzsa, Solving a linear equation in a set of integers I, Acta Arith. 65 (1993), 259-282. | Zbl 1042.11525

[008] [9] I. Z. Ruzsa, Solving a linear equation in a set of integers II, ibid. 72 (1995), 385-397. | Zbl 1044.11617

[009] [10] T. Schoen, On the density of universal sum-free sets, Combin. Probab. Comput. 8 (1999), 277-280. | Zbl 0936.11015

[010] [11] T. Schoen, Subsets of {1,...,n} with no solutions to the equation x+y = kz, in preparation.