1. Introduction. Let K be a field of characteristic p ≥ 0 and let f(X) be a polynomial of degree at least two with coefficients in K. We set f₁(X) = f(X) and define for all r ≥ 1. Following R. W. K. Odoni [7], we say that f is stable over K if is irreducible over K for every r ≥ 1. In [6] the same author proved that the polynomial f(X) = X² - X + 1 is stable over ℚ. He wrote in [7] that the proof given there is quite difficult and it would be of interest to have an elementary proof. In the sequel we shall use elementary methods for proving the stability of quadratic polynomials over number fields; especially the rational field, and over finite fields of characteristic p ≥ 3.
@article{bwmeta1.element.bwnjournal-article-aav93i1p87bwm, author = {Mohamed Ayad and Donald L. McQuillan}, title = {Irreducibility of the iterates of a quadratic polynomial over a field}, journal = {Acta Arithmetica}, volume = {92}, year = {2000}, pages = {87-97}, zbl = {0945.11020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav93i1p87bwm} }
Mohamed Ayad; Donald L. McQuillan. Irreducibility of the iterates of a quadratic polynomial over a field. Acta Arithmetica, Tome 92 (2000) pp. 87-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav93i1p87bwm/
[000] [1] E. Artin and J. Tate, Class Field Theory, Benjamin, New York, 1968. | Zbl 0176.33504
[001] [2] M. Ayad, Théorie de Galois, 122 exercices corrigés, niveau I, Ellipses, Paris, 1997.
[002] [3] Z. I. Borevitch et I. R. Chafarevitch, Théorie des nombres, Gauthier-Villars, Paris, 1967.
[003] [4] Y. Hellegouarch, Loi de réciprocité, critère de primalité dans , C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 291-296. | Zbl 0608.12022
[004] [5] P. J. McCarthy, Algebraic Extensions of Fields, Blaisdell, Waltham, 1966. | Zbl 0143.05802
[005] [6] R. W. K. Odoni, On the prime divisors of the sequence , J. London Math. Soc. 32 (1985), 1-11. | Zbl 0574.10020
[006] [7] R. W. K. Odoni, The Galois theory of iterates and composites of polynomials, Proc. London Math. Soc. 51 (1985), 385-414. | Zbl 0622.12011
[007] [8] O. Ore, Contributions to the theory of finite fields, Trans. Amer. Math. Soc. 36 (1934), 243-274. | Zbl 60.0111.04
[008] [9] N. G. Tschebotaröw, Grundzüge der Galois'schen theorie (translated from Russian by H. Schwerdtfeger), Noordhoff, Groningen, 1950. | Zbl 0037.14602