Existence of a non-entire twist for a class of L-functions
G. Molteni
Acta Arithmetica, Tome 92 (2000), p. 53-65 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:207399
@article{bwmeta1.element.bwnjournal-article-aav93i1p53bwm,
     author = {G. Molteni},
     title = {Existence of a non-entire twist for a class of L-functions},
     journal = {Acta Arithmetica},
     volume = {92},
     year = {2000},
     pages = {53-65},
     zbl = {0967.11037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav93i1p53bwm}
}
G. Molteni. Existence of a non-entire twist for a class of L-functions. Acta Arithmetica, Tome 92 (2000) pp. 53-65. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav93i1p53bwm/

[000] [1] W. Duke and H. Iwaniec, Convolution L-series, Compositio Math. 91 (1994), 145-158.

[001] [2] W. Duke and H. Iwaniec, Estimates for coefficients of L-functions II, in: Proc. Amalfi Conf. Analytic Number Theory (1989), E. Bombieri et al. (eds.), Università di Salerno, 1992, 71-82. | Zbl 0787.11020

[002] [3] J. Kaczorowski and A. Perelli, On the structure of the Selberg class, I: 0 ≤ d ≤ 1, Acta Math. 182 (1999), 207-241. | Zbl 1126.11335

[003] [4] T. Miyake, Modular Forms, Springer, 1989.

[004] [5] A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in: Collected Papers, Vol. II, Springer, 1991, 47-63; also in: Proc. Amalfi Conf. Analytic Number Theory (1989), E. Bombieri et al. (eds.), Università di Salerno, 1992, 367-385.

[005] [6] F. Shahidi, On certain L-functions, Amer. J. Math. 103 (1980), 297-355. | Zbl 0467.12013

[006] [7] F. Shahidi, Third symmetric power L-functions for GL(2), Compositio Math. 70 (1989), 245-275. | Zbl 0684.10026

[007] [8] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. 31 (1975), 79-98. | Zbl 0311.10029