@article{bwmeta1.element.bwnjournal-article-aav93i1p1bwm, author = {Bernd Greuel}, title = {Algebraic independence of the values of Mahler functions satisfying implicit functional equations}, journal = {Acta Arithmetica}, volume = {92}, year = {2000}, pages = {1-20}, zbl = {0961.11024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav93i1p1bwm} }
Bernd Greuel. Algebraic independence of the values of Mahler functions satisfying implicit functional equations. Acta Arithmetica, Tome 92 (2000) pp. 1-20. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav93i1p1bwm/
[000] [1] P.-G. Becker, Transcendence of the values of functions satisfying generalized Mahler type functional equations, J. Reine Angew. Math. 440 (1993), 111-128. | Zbl 0770.11037
[001] [2] V. G. Chirskiĭ, On the algebraic independence of the values of functions satisfying systems of functional equations, Proc. Steklov Inst. Math. 218 (1997), 433-438. | Zbl 0916.11041
[002] [3] J. H. Loxton and A. J. van der Poorten, Transcendence and algebraic independence by a method of Mahler, in: Transcendence Theory - Advances and Applications, A. Baker and D. W. Masser (eds.), Academic Press, New York, 1977, 211-226. | Zbl 0378.10020
[003] [4] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342-366. | Zbl 55.0115.01
[004] [5] K. Mahler, Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen, Math. Z. 32 (1930), 545-585. | Zbl 56.0186.01
[005] [6] K. Mahler, Über das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen, Math. Ann. 103 (1930), 573-587. | Zbl 56.0185.03
[006] [7] K. Mahler, Remarks on a paper by W. Schwarz, J. Number Theory 1 (1969), 512-521.
[007] [8] K. Nishioka, On a problem of Mahler for transcendency of function values, J. Austral. Math. Soc. Ser. A 33 (1982), 386-393. | Zbl 0502.10018
[008] [9] K. Nishioka, On a problem of Mahler for transcendency of function values II, Tsukuba J. Math. 7 (1983), 265-279. | Zbl 0542.10025
[009] [10] K. Nishioka, New approach in Mahler's method, J. Reine Angew. Math. 407 (1990), 202-219. | Zbl 0694.10035
[010] [11] K. Nishioka, Mahler Functions and Transcendence, Lecture Notes in Math. 1631, Springer, 1996. | Zbl 0876.11034
[011] [12] T. Schneider, Einführung in die transzendenten Zahlen, Springer, Berlin, 1957. | Zbl 0077.04703
[012] [13] T. Töpfer, An axiomatization of Nesterenko's method and applications on Mahler functions, J. Number Theory 49 (1994), 1-26. | Zbl 0813.11043
[013] [14] T. Töpfer, Algebraic independence of the values of generalized Mahler functions, Acta Arith. 70 (1995), 161-181. | Zbl 0815.11038
[014] [15] T. Töpfer, Simultaneous approximation measures for functions satisfying generalized functional equations of Mahler type, Abh. Math. Sem. Univ. Hamburg 66 (1996), 177-201. | Zbl 0873.11044
[015] [16] M. Waldschmidt, Algebraic independence of transcendental numbers: a survey, in: Proceedings of the Fifth Conference of the Canadian Number Theory Association; Monograph on Number Theory, Indian National Science Academy, R. P. Bambah et al. (eds.), to appear; http://www.math.jussieu.fr/ miw, 1998.
[016] [17] N. C. Wass, Algebraic independence of the values at algebraic points of a class of functions considered by Mahler, Dissertationes Math. 303 (1990). | Zbl 0707.11050
[017] [18] A. Weil, Foundations of Algebraic Geometry, Colloq. Publ. 29, Amer. Math. Soc., 1962 | Zbl 0168.18701