Inclusion of CM-fields and divisibility ofrelative class numbers
Ryotaro Okazaki
Acta Arithmetica, Tome 92 (2000), p. 319-338 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:207391
@article{bwmeta1.element.bwnjournal-article-aav92i4p319bwm,
     author = {Ryotaro Okazaki},
     title = {Inclusion of CM-fields and divisibility ofrelative class numbers},
     journal = {Acta Arithmetica},
     volume = {92},
     year = {2000},
     pages = {319-338},
     zbl = {0952.11023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav92i4p319bwm}
}
Ryotaro Okazaki. Inclusion of CM-fields and divisibility ofrelative class numbers. Acta Arithmetica, Tome 92 (2000) pp. 319-338. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav92i4p319bwm/

[000] [1] S. Arno, The imaginary quadratic fields of class number 4, Acta Arith. 60 (1992), 321-334. | Zbl 0760.11033

[001] [2] A. Baker, A remark on the class number of quadratic fields, Bull. London Math. Soc. 1 (1966), 98-102.

[002] [3] A. Baker, Imaginary quadratic fields with class number 2, Ann. of Math. 94 (1971), 139-152.

[003] [4] H. Furuya, On divisibility by 2 of the relative class numbers of imaginary number fields, Tôhoku Math. J. 23 (1971), 207-218. | Zbl 0225.12006

[004] [5] D. M. Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa (4) 3 (1976), 623-663. | Zbl 0345.12007

[005] [6] B. Gross et D. Zagier, Points de Heegner et derivées de fonctions L, C. R. Acad. Sci. Paris 297 (1983), 85-87.

[006] [7] K. Győry, Sur une classe des corps de nombres algébriques et ses applications, Publ. Math. Debrecen 22 (1975), 151-175. | Zbl 0336.12005

[007] [8] K. Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227-253.

[008] [9] H. Heilbronn, On real zeros of Dedekind ζ-functions, Canad. J. Math. 25 (1973), 870-873. | Zbl 0272.12010

[009] [10] M. Hirabayashi and K. Yoshino, Remarks on unit indices of imaginary abelian number fields II, Manuscripta Math. 64 (1989), 235-251. | Zbl 0703.11054

[010] [11] J. Hoffstein, Some analytic bounds for zeta functions and class numbers, Invent. Math. 55 (1979), 37-47. | Zbl 0474.12009

[011] [12] K. Horie, On a ratio between relative class numbers, Math. Z. 211 (1992), 505-521. | Zbl 0761.11039

[012] [13] K. Horie, On CM-fields with the same maximal real subfield, Acta Arith. 67 (1994), 219-227. | Zbl 0811.11065

[013] [14] D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp. 24 (1970), 433-451. | Zbl 0203.35301

[014] [15] F. Lemmermeyer, Kuroda's class number formula, Acta Arith. 66 (1994), 245-260. | Zbl 0807.11052

[015] [16] F. Lemmermeyer, Ideal class groups of cyclotomic number fields I, ibid. 72 (1995), 347-359. | Zbl 0837.11059

[016] [17] F. Lemmermeyer, On 2-class field towers of some imaginary quadratic number fields, Abh. Math. Sem. Univ. Hamburg 67 (1997), 205-214. | Zbl 0919.11075

[017] [18] M. E. Low, Real zeros of the Dedekind zeta function of an imaginary quadratic field, Acta Arith. 14 (1968), 117-140. | Zbl 0207.05602

[018] [19] H. L. Montgomery and P. J. Weinberger, Notes on small class numbers, ibid. 24 (1974), 529-542. | Zbl 0285.12004

[019] [20] P. Roquette, On class field towers, in: Algebraic Number Theory, J. W. S. Cassels and A. Fröhlich (eds.), Academic Press, London, 1967, 231-249.

[020] [21] G. Shimura, Abelian Varieties with Complex Multiplication and Modular Functions, Princeton Univ. Press, Princeton, 1997. | Zbl 0908.11023

[021] [22] G. Shimura and Y. Taniyama, Complex Multiplication of Abelian Varieties, The Mathematical Society of Japan, 1961. | Zbl 0112.03502

[022] [23] H. M. Stark, A complete determination of the complex quadratic fields of class number one, Michigan Math. J. 14 (1967), 1-27.

[023] [24] H. M. Stark, On complex quadratic fields with class number two, Math. Comp. 29 (1975), 289-302. | Zbl 0321.12009

[024] [25] H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135-152. | Zbl 0278.12005

[025] [26] T. Takagi, Über eine Theorie des relativ Abel'schen Zahlkörpers, in: T. Takagi, Collected Papers, Springer, Tokyo, 1990, 73-167.

[026] [27] L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982, 2nd ed., 1991. | Zbl 0484.12001

[027] [28] E. E. Whitaker, A determination of the imaginary quadratic number fields with Klein-four group as class group, thesis, 1972.