@article{bwmeta1.element.bwnjournal-article-aav92i4p291bwm, author = {Weiqun Hu}, title = {A Schinzel theorem on continued fractions in function fields}, journal = {Acta Arithmetica}, volume = {92}, year = {2000}, pages = {291-302}, zbl = {0984.11058}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav92i4p291bwm} }
Weiqun Hu. A Schinzel theorem on continued fractions in function fields. Acta Arithmetica, Tome 92 (2000) pp. 291-302. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav92i4p291bwm/
[000] [1] E. Artin, Quadratische Körper im Gebiet der höheren Kongruenzen I, II, Math. Z. 19 (1924), 154-246. | Zbl 50.0631.03
[001] [2] A. Farhane, Minoration de la période du développement de √(a²n²+bn+c) en fraction continue, Acta Arith. 67 (1994), 63-67.
[002] [3] C. D. González, Class number of quadratic function fields and continued fractions, J. Number Theory 40 (1992), 38-59. | Zbl 0747.11054
[003] [4] D. Hayes, Real quadratic function fields, in: CMS Conf. Proc. 7, Amer. Math. Soc., 1987, 203-236.
[004] [5] L. K. Hua, Introduction to Number Theory, Springer, 1982.
[005] [6] S. Louboutin, Une version effective d'un théorème de A. Schinzel sur longueurs des périodes de certains développements en fractions continues, C. R. Acad. Sci. Paris Sér. I 308 (1989), 511-513. | Zbl 0676.10021
[006] [7] B. de Mathan, Approximations diophantiennes dans un corps local, Bull. Soc. Math. France Mém. 21 (1970). | Zbl 0221.10037
[007] [8] A. Schinzel, On some problems of the arithmetical theory of continued fractions, Acta Arith. 6 (1961), 393-413. | Zbl 0099.04003