A Schinzel theorem on continued fractions in function fields
Weiqun Hu
Acta Arithmetica, Tome 92 (2000), p. 291-302 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:207389
@article{bwmeta1.element.bwnjournal-article-aav92i4p291bwm,
     author = {Weiqun Hu},
     title = {A Schinzel theorem on continued fractions in function fields},
     journal = {Acta Arithmetica},
     volume = {92},
     year = {2000},
     pages = {291-302},
     zbl = {0984.11058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-aav92i4p291bwm}
}
Weiqun Hu. A Schinzel theorem on continued fractions in function fields. Acta Arithmetica, Tome 92 (2000) pp. 291-302. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-aav92i4p291bwm/

[000] [1] E. Artin, Quadratische Körper im Gebiet der höheren Kongruenzen I, II, Math. Z. 19 (1924), 154-246. | Zbl 50.0631.03

[001] [2] A. Farhane, Minoration de la période du développement de √(a²n²+bn+c) en fraction continue, Acta Arith. 67 (1994), 63-67.

[002] [3] C. D. González, Class number of quadratic function fields and continued fractions, J. Number Theory 40 (1992), 38-59. | Zbl 0747.11054

[003] [4] D. Hayes, Real quadratic function fields, in: CMS Conf. Proc. 7, Amer. Math. Soc., 1987, 203-236.

[004] [5] L. K. Hua, Introduction to Number Theory, Springer, 1982.

[005] [6] S. Louboutin, Une version effective d'un théorème de A. Schinzel sur longueurs des périodes de certains développements en fractions continues, C. R. Acad. Sci. Paris Sér. I 308 (1989), 511-513. | Zbl 0676.10021

[006] [7] B. de Mathan, Approximations diophantiennes dans un corps local, Bull. Soc. Math. France Mém. 21 (1970). | Zbl 0221.10037

[007] [8] A. Schinzel, On some problems of the arithmetical theory of continued fractions, Acta Arith. 6 (1961), 393-413. | Zbl 0099.04003